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What is an outlier?
Observations that…
• “…are inconsistent with the remainder…”

• “… deviate so much … as to arouse suspicions … they 
were generated by a different mechanism”

• “… deviate markedly from other members of 
sample in which it occurs”
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[Hawkins ’80]

[Grubbs ’69]

[Barnett&Lewis’94]



Outlier Detection: Use-cases
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Sources: https://towardsdatascience.com/detecting-hate-tweets-twitter-sentiment-analysis-780d8a82d4f6, https://www.google.com/url?q=https://www.the-digital-insurer.com/insurance-fraud-digital-age-neural-technologies-white-
paper/&sa=D&source=hangouts&ust=1620381203046000&usg=AFQjCNGpeSoWM0xriR0YhGq3vXzrhdisLg,, https://www.google.com/url?q=https://www.internetmatters.org/hub/news-blogs/stopping-the-spread-of-fake-news-on-popular-online-
platforms/&sa=D&source=hangouts&ust=1620381203046000&usg=AFQjCNHTmHYACxrqcOX0A-vTMcTpM3_Fxw , https://www.investopedia.com,, https://traderdefenseadvisory.com/,, https://www.google.com/url?q=https://blog.volkovlaw.com/2015/01/healthcare-fraud-
aggressive-enforcement-strategies/&sa=D&source=hangouts&ust=1620386116751000&usg=AFQjCNGw2wgs6uMWfIB8D2L6qXeJWPnibg,  



Outlier Detection

4

Inconsistent with normal 
observationsNormal instances



Outlier Detection
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Outlier

Normal instances
Detector

Ranked 
instances

?
Human 
expert

• designed to spot/flag rare, minority samples
• e.g. suspicious activity, abnormal heart rate, etc.
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Outlier

Normal instances
Detector

Ranked 
instances

?
Human 
expert

• designed to spot/flag rare, minority samples
• e.g. suspicious activity, abnormal heart rate, etc.

• facilitates auditing (“policing”) by human experts
• e.g. Stop-and-frisk in automated surveillance flagged instances

• Human-labeled data for downstream learning tasks



Outlier Detection
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Outlier

Normal instances
Detector

Ranked 
instances

?
Human 
expert

• designed to spot/flag rare, minority samples
• e.g. suspicious activity, abnormal heart rate etc.

• facilitates auditing (“policing”) by human experts
• e.g. stop-and-frisk in automated surveillance flagged instances

• human labeled data for downstream learning tasks

Assumes outlierness reflects 
true riskiness.



Roadmap

• Problem: Fairness in OD

• Desiderata

• Fairness-aware OD

• Evaluation
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Bias in Outlier Detection

9

• Simulated dataset

• equal sized groups 

• groups induced by 
PV = a and PV = b



Bias in Outlier Detection
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Higher outlier scores as 
sample size of 𝑃𝑉 = 𝑏
is decreased

• Simulated dataset

• equal sized groups 

• groups induced by 
PV = a and PV = b



Bias in Outlier Detection
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Corresponding flag rate 
for 𝑃𝑉 = 𝑏 increases

Increasing flag rate

• Simulated dataset

• equal sized groups 

• groups induced by 
PV = a and PV = b



Bias in Outlier Detection
• Societal minorities may be statistical minorities

• defined by protected variable (PV) :
race/ ethnicity/gender/age etc.
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≠ riskiness



Bias in Outlier Detection
• Disparate Impact

• Unjust flagging leads to “over-policing”
• Feedback loop results in further skewness
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Biased 
training 

data

Biased 
algorithm Biased 

outcome

Biased feedback



Fair Outlier Detection
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• Given:
Ø Observations 𝒳 = {𝑋!}!"#$ ⊆ ℝ%

Ø 𝒫𝒱 = {𝑃𝑉!}!"#$ , 𝑃𝑉! ∈ {𝑎, 𝑏}
o 𝑃𝑉! = 𝑎 identifies majority group

• Build a detector that estimates outlier scores 𝒮
and assigns outlier labels 𝒪 s.t.

i. assigned labels and scores are “fair” w.r.t. the 𝑃𝑉

ii. higher scores correspond to higher riskiness encoded 
by the underlying (unobserved) true labels 𝒴
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• Given:
Ø Observations 𝒳 = {𝑋!}!"#$ ⊆ ℝ%

Ø 𝒫𝒱 = {𝑃𝑉!}!"#$ , 𝑃𝑉! ∈ {𝑎, 𝑏}
Ø 𝑃𝑉! = 𝑎 identifies majority group

• Build a detector that estimates outlier scores 𝒮 and 
assigns outlier labels 𝒪 s.t.

i. assigned labels and scores are “fair” w.r.t. the 𝑃𝑉

ii. higher scores correspond to higher riskiness encoded 
by the underlying (unobserved) true labels 𝒴

What constitutes a “fair” outcome in OD?



Literature on Fairness in OD
• Algorithmic fairness – mostly for supervised ML
o Unsupervised OD adds challenge

o Numerous notions of fairness and associated 
incompatibility results

• Possible approach: pre-processing 
Ø re-purpose (unsupervised) fair representation learning 

1. PV-obfuscated/masked new embeddings

2. Re-weighted/adjusted data distributions

• Issue: an isolated/detached step to OD task at hand
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Literature on Fairness in OD
• Algorithmic fairness – mostly for supervised ML

o Unsupervised OD adds challenge
o Numerous notions of fairness and associated incompatibility results

• Countably-few work on fairness for OD
1. A Framework for Determining the Fairness of Outlier Detection.  

[Ravi & Davidson, ECAI 2020]

v Quantify/measure (detect) the (un)fairness of OD model outcomes 
post hoc (i.e. proceeding detection)

2. Fair Outlier Detection. [P & Abraham, WISE 2020]

3. Towards Fair Deep Anomaly Detection. [Zhang & Davidson, FAccT 2021]

4. Deep Clustering based Fair Outlier Detection. [Song+, KDD 2021]

5. Fairness-aware Outlier Ensemble. [Liu+, 2021 - unpublished]
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Roadmap

• Desiderata

• Fairness-aware OD

• Evaluation
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Proposed Desiderata
D1. Detection effectiveness

D2. Treatment parity

D3. Statistical parity (SP) 

D4. Group fidelity 

D5. Base rate preservation 

19

detection 
performance

fairness 
related



Proposed Desiderata
D1. Detection effectiveness - accurate at detection 

𝑃 (𝑌 = 1 | 𝑂 = 1) > 𝑃 (𝑌 = 1)

20

Ø related to detection performance 



Proposed Desiderata

D2. Treatment parity – decision avoids use of PV

𝑃(𝑂=1|𝑋) = 𝑃(𝑂=1|𝑋, 𝑃𝑉=𝑣), ∀𝑣

21

Ø ensures OD-decisions are “blindfolded” to PV



Proposed Desiderata

D2. Treatment parity – decision avoids use of PV

𝑃(𝑂=1|𝑋) = 𝑃(𝑂=1|𝑋, 𝑃𝑉=𝑣), ∀𝑣
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Ø ensures OD-decisions are “blindfolded” to PV

Ø (!) may allow discriminatory OD results for minority:

o due to several other features that (partially-)redundantly 
encode the PV (e.g. zipcode & race). 

o OD will use the PV indirectly,  through proxy features.



Proposed Desiderata

D3. Statistical parity (SP) – decision independent of PV

𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏)

23

Ø a.k.a. demographic parity, or group fairness



Proposed Desiderata

D3. Statistical parity (SP) – decision independent of PV

𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏)
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fraction of minority (majority) members in flagged set 
is the same as 

fraction of minority (majority) in overall population. 

=)
<latexit sha1_base64="HMfr/LPTm2TgOdnS9fG9kiDX+Vs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDbbSbt0dxN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemHCmjed9O4W19Y3NreJ2aWd3b/+gfHjU0nGqKDZpzGPVCYlGziQ2DTMcO4lCIkKO7XB8O/PbT6g0i+WDmSQYCDKULGKUGCt1ekzYLaj75YpX9eZwV4mfkwrkaPTLX71BTFOB0lBOtO76XmKCjCjDKMdpqZdqTAgdkyF2LZVEoA6y+b1T98wqAzeKlS1p3Ln6eyIjQuuJCG2nIGakl72Z+J/XTU10HWRMJqlBSReLopS7JnZnz7sDppAaPrGEUMXsrS4dEUWosRGVbAj+8surpFWr+hfV2v1lpX6Tx1GEEziFc/DhCupwBw1oAgUOz/AKb86j8+K8Ox+L1oKTzxzDHzifP0N5kB0=</latexit>



Proposed Desiderata

D3. Statistical parity (SP) – decision independent of PV

𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏)
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=)
<latexit sha1_base64="HMfr/LPTm2TgOdnS9fG9kiDX+Vs=">AAAB73icbVBNS8NAEJ3Ur1q/qh69BIvgqSRV0GPRi8cK9gPaUDbbSbt0dxN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZemHCmjed9O4W19Y3NreJ2aWd3b/+gfHjU0nGqKDZpzGPVCYlGziQ2DTMcO4lCIkKO7XB8O/PbT6g0i+WDmSQYCDKULGKUGCt1ekzYLaj75YpX9eZwV4mfkwrkaPTLX71BTFOB0lBOtO76XmKCjCjDKMdpqZdqTAgdkyF2LZVEoA6y+b1T98wqAzeKlS1p3Ln6eyIjQuuJCG2nIGakl72Z+J/XTU10HWRMJqlBSReLopS7JnZnz7sDppAaPrGEUMXsrS4dEUWosRGVbAj+8surpFWr+hfV2v1lpX6Tx1GEEziFc/DhCupwBw1oAgUOz/AKb86j8+K8Ox+L1oKTzxzDHzifP0N5kB0=</latexit>

Ø Derives from “luck egalitarianism” : 
counteract the distributive effects of “brute luck” 
– by redistributing equality to those who suffer through 
no fault of their own choosing of race, gender, etc.

[Carl Knight, 2009]



Proposed Desiderata

D3. Statistical parity (SP) – decision independent of PV

𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏)

26

Ø permits “laziness” ; may disadvantage some groups  
despite SP [Barocas et al.’2017]

PV ∈ { , }



Proposed Desiderata

D3. Statistical parity (SP) – decision independent of PV

𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏)
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Ø permits “laziness” [Barocas et al.’2017]

PV ∈ { , }



Proposed Desiderata

D4. Group fidelity – decision faithful to ground-truth

𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑏)

28

Ø penalizes “laziness”

Ø equivalent to the so-called Equality of Opportunity*

Ø same true positive rate (TPR) for all groups



Proposed Desiderata

D4. Group fidelity – decision faithful to ground-truth

𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑏)
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Ø D3 (SP) and D4 are incompatible

Ø requires access to the ground-truth

o unavailable for unsupervised OD task
[Barocas et al.’2017]



Proposed Desiderata

D4. Group fidelity – decision faithful to ground-truth

𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑌=1, 𝑃𝑉=𝑏)
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Ø approx.: enforce group-level rank preservation 

Ø fidelity to within-group ranking from the 𝐵𝐴𝑆𝐸 model

Ø 𝜋&'"()*+, = 𝜋&'"(; ∀𝑣 ∈ {𝑎, 𝑏}
Ø 𝜋 denotes ranking



Proposed Desiderata

D5. Base rate preservation – equal base rate 
in flagged instances and the population

𝑃(𝑌 = 1|𝑂 = 1, 𝑃𝑉 =𝑣) = 𝑃(𝑌 =1|𝑃𝑉 =𝑣) , ∀𝑣 ∈ {𝑎, 𝑏}

31

Base rate/Prevalence
for 𝑃𝑉 =𝑣



Proposed Desiderata

D5. Base rate preservation – equal base rate 
in flagged instances and the population

𝑃(𝑌 = 1|𝑂 = 1, 𝑃𝑉 =𝑣) = 𝑃(𝑌 =1|𝑃𝑉 =𝑣) , ∀𝑣 ∈ {𝑎, 𝑏}

32

Ø Incompatibility: given OD satisfies D1 and D3, 
it cannot also satisfy D5 
(See Claim 1 in the paper)



Proposed Desiderata

D5. Base rate preservation – equal base rate 
in flagged instances and the population

𝑃(𝑌 = 1|𝑂 = 1, 𝑃𝑉 =𝑣) = 𝑃(𝑌 =1|𝑃𝑉 =𝑣) , ∀𝑣 ∈ {𝑎, 𝑏}

33

Ø relaxation: preservation of the ratio of base rates
o Leads to overestimation of true group-level base rates

Ø still, D5 cannot be enforced: relies on ground-truth

(Claim 2)



Proposed Desiderata
D1. Detection effectiveness

D2. Treatment parity

D3. Statistical parity (SP) 

D4. Group fidelity 

D5. Base rate preservation 

34

✓Enforceable

✓Enforceable via 
proposed proxy

✗Can’t be 
enforced



Proposed Desiderata
D1. Detection effectiveness

D2. Treatment parity

D3. Statistical parity (SP) 

D4. Group fidelity 

D5. Base rate preservation 

35

✓Enforceable

✓Enforceable via 
proposed proxy

✗Can’t be 
enforced

Fair OD model follows the proposed desiderata
D1 - D4.



Literature on Fairness in OD
• Countably-few work on fair OD
1. Fair Outlier Detection. [P and Abraham, WISE 2020]

Ø Seminal paper
Ø disparate treatment (i.e. uses PV) at decision time (may be 

unlawful for some settings!)
Ø prioritizes statistical parity (SP); may permit “laziness”
Ø not end-to-end but rather heuristic

2. Towards Fair Deep Anomaly Detection. [Zhang & 
Davidson, FAccT 2021]

Ø focus on SP
Ø one-class objective & adversarial training for PV prediction

36



Literature on Fairness in OD
• Countably-few work on fairness for OD
3. Deep Clustering based Fair Outlier Detection. [Song+, 

KDD 2021]

Ø Again, sole focus on SP

4. Fairness-aware Outlier Ensemble. [Liu+, 2021; not publ.]
Ø assumes the outlier scores “obtained from the base outlier 

ensemble method is an optimal result” (why do anything if 
this is true!) 

Ø notions of group fairness : focus on SP only & 
individual fairness : similarity “based on original feature 
values excluding sensitive features” (proxy variables!)

37



Roadmap

• Fairness-aware OD

• Evaluation
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Fairness-aware Outlier detection

39

• Given:
Ø Observations 𝒳 = {𝑋!}!"#$ ⊆ ℝ%

Ø 𝒫𝒱 = {𝑃𝑉!}!"#$ , 𝑃𝑉! ∈ {𝑎, 𝑏}
o 𝑃𝑉! = 𝑎 identifies majority group

• Build a detector that estimates outlier scores 𝒮
and assigns outlier labels 𝒪 to achieve 
i. 𝑃 (𝑌 = 1 | 𝑂 = 1) > 𝑃 (𝑌 = 1) [D1]
ii. 𝑃(𝑂=1|𝑋) = 𝑃(𝑂=1|𝑋, 𝑃𝑉=𝑣), ∀𝑣 [D2]
iii. 𝑃(𝑂=1|𝑃𝑉=𝑎) = 𝑃(𝑂=1|𝑃𝑉=𝑏) [D3]

iv. π&'"()*+, = π&'"(; ∀𝑣 , [D4]
BASE is fairness-agnostic detector 



FAIROD
• Instantiates deep-autoencoder as BASE detector

40

Reconstruction error 
as outlier score

• Minimizes the regularized loss: 



FAIROD
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See paper for details : https://arxiv.org/pdf/2012.03063.pdf

groups (statistical parity), and encourages correct top group ranking (group �delity), while not
requiring PV for decision-making on new samples (non-disparate treatment). As such, it aims to
target the proposed desiderata D1 – D4 as described in Sec. 2.

3.1 Base Framework
Our proposed OD model instantiates a deep-autoencoder (AE) framework for the base outlier
detection task. However, we remark that the fairness regularization criteria introduced by F���OD
can be plugged into any end-to-end optimizable anomaly detector, such as one-class support
vector machines [61], deep anomaly detector [13], variational AE for OD [3], and deep one-class
classi�ers [60]. Our choice of AE as the ���� OD model stems from the fact that AE-inspired
methods have been shown to be state-of-the-art outlier detectors [15, 47, 75] and that our fairness-
aware loss criteria can be optimized in conjunction with the objectives of such models. The main
goal of F���OD is to incorporate our proposed notions of fairness into an end-to-end OD model,
irrespective of the choice of the ���� model family.
AE consists of two main components: an encoder GE : X 2 Rd 7! Z 2 Rm and a decoder

GD : Z 2 Rm 7! X 2 Rd . GE (X ) encodes the input X to a hidden vector (also called code) Z that
preserves the important aspects of the input. Then, GD (Z ) aims to generate X 0; a reconstruction
of the input from the hidden vector Z . Overall, the AE can be written as G = GD �GE , such that
G (X ) = GD (GE (X )). For a given AE based framework, the outlier score for X is computed using
the reconstruction error as

s (X ) = kX �G (X )k22 . (9)

Outliers tend to exhibit large reconstruction errors because they do not conform to to the
patterns in the data as coded by an auto-encoder, hence the use of reconstruction errors as outlier
scores [2, 52, 62]. This scoring function is general in that it applies to many reconstruction-based OD
models, which have di�erent parameterizations of the reconstruction function G. We show in the
following how F���OD regularizes the reconstruction loss from ���� through fairness constraints
that are conjointly optimized during the training process. Speci�cally, the ���� ODmodel optimizes
the following

L���� =

NX

i=1
kXi �G (Xi )k

2
2 (10)

and we denote its outlier scoring function as s���� (·).

3.2 Fairness-aware Loss Function
We begin with designing a loss function for our OD model that optimizes for achieving SP and
group �delity by introducing regularization to the ���� objective criterion. Speci�cally, F���OD
minimizes the following loss function:

L = � L����|{z}
Reconstruction

+ (1 � � ) LSP|{z}
Statistical Parity

+ � LGF|{z}
Group Fidelity

(11)

where � 2 [0, 1] and � � 0 are hyperparameters which govern the balance between di�erent
components in the loss function.
The �rst term in Eq. (11) is the objective for learning the reconstruction (based on ���� model

family) as given in Eq. (10), which quanti�es the goodness of the encoding Z via the squared error
between the original input and its reconstruction generated from Z . The second component in
Eq. (11) corresponds to regularization introduced to enforce the fairness notion of independence,
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or statistical parity (SP) as given in Eq. (4). Speci�cally, the term seeks to minimize the absolute
correlation between the outlier scores S (used for producing predicted labels O) and protected
variable values PV . LSP is given as

LSP =

�������

⇣ PN
i=1 s (Xi ) � µs

⌘ ⇣ PN
i=1 PVi � µPV

⌘

�s �PV

�������
, (12)

where,

µs =
1
N

NX

i=1
s (Xi ), µPV =

1
N

NX

i=1
PVi , �s =

1
N

NX

i=1
(s (Xi ) � µs )

2, and �PV =
1
N

NX

i=1
(PVi � µPV )

2.

We adapt this absolute correlation loss from [8], which proposed its use in a supervised setting
with the goal of enforcing statistical parity. As [8] mentions, while minimizing this loss does not
guarantee independence, it performs empirically quite well and o�ers stable training. We observe
the same in practice; it leads to quite low correlation between OD outcomes and the protected
variable (see details in Sec. 4).

Finally, the third component of Eq. (11) emphasizes that F���OD should maintain �delity to
within-group rankings from the ���� model. We set up a listwise learning-to-rank objective in
order to enforce group �delity. Our goal is to train F���OD such that it re�ects the within-group
rankings based on s���� (·) from ����. To that end, we employ a listwise ranking loss criterion that
is based on the well-known Discounted Cumulative Gain (DCG) [31] measure, often used to assess
ranking quality in information retrieval tasks such as search. For a given ranked list, DCG is de�ned
as

DCG =
X

r

2r elr � 1
log2 (1 + r )

where relr depicts the relevance of the item ranked at the r th position. In our setting, we use the
outlier score s���� (X ) of an instance X to re�ect its relevance since we aim to mimic the group-level
ranking by ����. As such, DCG per group can be re-written as

DCGPV=� =
X

Xi 2XPV=�

2s���� (Xi ) � 1
log2

⇣
1 +
P

Xk 2XPV=� [s (Xi )  s (Xk )]
⌘

where XPV=a and XPV=b would respectively denote the set of observations from majority and
minority groups, and s (X ) is the estimated outlier score from our F���OD model under training.

A challenge with DCG is that it is not di�erentiable, as it involves ranking (sorting). Speci�cally,
the sum term in the denominator uses the (non-smooth) indicator function (·) to obtain the
position of instance i as ranked by the estimated outlier scores. We circumvent this challenge by
replacing the indicator function by the (smooth) sigmoid approximation, following [57]. Then, the
group �delity loss component LGF is given as

LGF =
X

� 2 {a,b }

*.
,
1 �

X

Xi 2XPV=�

2s���� (Xi ) � 1
log2

⇣
1 +
P

Xk 2XPV=� sigm(s (Xk ) � s (Xi ))
⌘
· IDCGPV=�

+/
-

(13)

where sigm(x ) = exp(�cx )
1+exp(�cx ) is the sigmoid function where c > 0 is the scaling constant, and,

IDCGPV=� =

|XPV=� |X

j=1

2s���� (X j ) � 1
log2 (1 + j )
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or statistical parity (SP) as given in Eq. (4). Speci�cally, the term seeks to minimize the absolute
correlation between the outlier scores S (used for producing predicted labels O) and protected
variable values PV . LSP is given as

LSP =

�������

⇣ PN
i=1 s (Xi ) � µs

⌘ ⇣ PN
i=1 PVi � µPV

⌘

�s �PV

�������
, (12)

where,

µs =
1
N

NX

i=1
s (Xi ), µPV =

1
N

NX

i=1
PVi , �s =

1
N

NX

i=1
(s (Xi ) � µs )

2, and �PV =
1
N

NX

i=1
(PVi � µPV )

2.

We adapt this absolute correlation loss from [8], which proposed its use in a supervised setting
with the goal of enforcing statistical parity. As [8] mentions, while minimizing this loss does not
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A challenge with DCG is that it is not di�erentiable, as it involves ranking (sorting). Speci�cally,
the sum term in the denominator uses the (non-smooth) indicator function (·) to obtain the
position of instance i as ranked by the estimated outlier scores. We circumvent this challenge by
replacing the indicator function by the (smooth) sigmoid approximation, following [57]. Then, the
group �delity loss component LGF is given as

LGF =
X

� 2 {a,b }

*.
,
1 �

X

Xi 2XPV=�

2s���� (Xi ) � 1
log2

⇣
1 +
P

Xk 2XPV=� sigm(s (Xk ) � s (Xi ))
⌘
· IDCGPV=�

+/
-

(13)

where sigm(x ) = exp(�cx )
1+exp(�cx ) is the sigmoid function where c > 0 is the scaling constant, and,

IDCGPV=� =

|XPV=� |X

j=1

2s���� (X j ) � 1
log2 (1 + j )
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Roadmap

• Evaluation
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Datasets
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Synthetic 
datasets



Baselines
• BASE – fairness-agnostic deep anomaly detector

• RW – reweights instances

• DIR – edits features to de-correlate PV

• LFR – latent representation obfuscating PV information

• ARL – latent representation via adversarial training

44

Preprocessing based methods
[Kamiran et al.’2012]

[Feldman et al.’2015]

[Zemel et al.’2013]

[Beutel et al.’2017]



Evaluation Measures
• Fairness = min 𝑟, %

&
, where 𝑟 = 𝑃 (𝑂=1|𝑃𝑉 =𝑎)

𝑃 (𝑂=1|𝑃𝑉 = b)

• Group Fidelity = 𝐻𝑀(𝑁𝐷𝐶𝐺'()*, 𝑁𝐷𝐶𝐺'()+)

• AUC-ratio = !"#-./0
!"#-./1

• AP-ratio = !$-./0
!$-./1

45

Label-aware parity measures 
used when ground-truth 

labels are available

[D3]

[D4]



Fairness

46

Group Fidelity vs Fairness

Reference



Fairness

47

Label-aware 
parity measures 

vs Fairness



Fairness-accuracy trade-off 

48



Ablation study
• FairOD-L : only SP-based regularization (permits “Laziness”)

• FairOD-C : Correlation-based group fidelity regularization

49



Conclusion
ü Guiding desiderata for, and concrete formalization

of the fair OD problem 

ü Introduced well-motivated fairness criteria 

ü Proposed FAIROD

o End-to-end detector w/ prescribed criteria 

o Accurate detection that 
achieves fairness goals
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Fig. 2. Fairness (as quantified by statistical parity) vs. GroupFidelity (as quantified by group-level rank
preservation) of baseline methods and our proposed F���OD, (le�) averaged across datasets, and (right)
on individual datasets (depicted by separate points per method). Note that F���OD outperforms existing
solutions and achieves Fairness while preserving group-level ranking (Group fidelity) from the ���� detector.
See Sec. 4 for more details.

(1) Desiderata and Problem De�nition for Fair Outlier Detection: We identify �ve prop-
erties that characterize detection quality and fairness in OD. These properties dictate the
design of detectors that are fairness-aware. We present justi�cation for each of the identi�ed
properties and outline what properties can be realized in an unsupervised detector, based
on which we formally de�ne the (unsupervised) fairness-aware OD problem (Sec. 2).

(2) Fairness Criteria and New, Fairness-Aware OD Model: We introduce well-motivated
fairness criteria and give mathematical objectives which can be optimized to obey desiderata
for the de�ned fairness-aware OD problem. The criteria are universal, in that they can be
embedded into the objective function of any end-to-end outlier detector. We propose F���OD,
a fairness-aware detector, which incorporates the prescribed criteria directly into its training.
Notably, F���OD (1) does not employ disparate treatment at test time, (2) aims to �ag equal
proportion of samples from all groups (i.e. obtain group fairness, via statistical parity), while
(3) striving to �ag truly high-risk fraction of samples within each group. (Sec. 3.1)

(3) E�ectiveness on Real-world Data: We apply F���OD on a number of both real-world
and synthetic datasets, including use cases such as credit risk assessment and hate speech
detection. Experiments demonstrate the e�ectiveness of F���OD in achieving the fairness
goals (Fig. 2) as well as providing accurate detection (Fig. 6, Sec. 4), signi�cantly outperform-
ing state-of-the-art unsupervised fairness techniques utilized for representation learning and
data pre-processing prior to the OD task.

Reproducibility: The source code for F���OD and all datasets used in our evaluation are
released at https://tinyurl.com/fairOD.
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Fig. 2. Fairness (as quantified by statistical parity) vs. GroupFidelity (as quantified by group-level rank
preservation) of baseline methods and our proposed F���OD, (le�) averaged across datasets, and (right)
on individual datasets (depicted by separate points per method). Note that F���OD outperforms existing
solutions and achieves Fairness while preserving group-level ranking (Group fidelity) from the ���� detector.
See Sec. 4 for more details.

(1) Desiderata and Problem De�nition for Fair Outlier Detection: We identify �ve prop-
erties that characterize detection quality and fairness in OD. These properties dictate the
design of detectors that are fairness-aware. We present justi�cation for each of the identi�ed
properties and outline what properties can be realized in an unsupervised detector, based
on which we formally de�ne the (unsupervised) fairness-aware OD problem (Sec. 2).

(2) Fairness Criteria and New, Fairness-Aware OD Model: We introduce well-motivated
fairness criteria and give mathematical objectives which can be optimized to obey desiderata
for the de�ned fairness-aware OD problem. The criteria are universal, in that they can be
embedded into the objective function of any end-to-end outlier detector. We propose F���OD,
a fairness-aware detector, which incorporates the prescribed criteria directly into its training.
Notably, F���OD (1) does not employ disparate treatment at test time, (2) aims to �ag equal
proportion of samples from all groups (i.e. obtain group fairness, via statistical parity), while
(3) striving to �ag truly high-risk fraction of samples within each group. (Sec. 3.1)

(3) E�ectiveness on Real-world Data: We apply F���OD on a number of both real-world
and synthetic datasets, including use cases such as credit risk assessment and hate speech
detection. Experiments demonstrate the e�ectiveness of F���OD in achieving the fairness
goals (Fig. 2) as well as providing accurate detection (Fig. 6, Sec. 4), signi�cantly outperform-
ing state-of-the-art unsupervised fairness techniques utilized for representation learning and
data pre-processing prior to the OD task.

Reproducibility: The source code for F���OD and all datasets used in our evaluation are
released at https://tinyurl.com/fairOD.
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Code, paper, and slides

https://tinyurl.com/fairOD

Thanks!

Dimitris Berberidis

https://tinyurl.com/fairOD

