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What is an outlier?

Observations that...

. “...are inconsistent with the remainder...”

. . [Barnett&Lewis'94]
- “... deviate so much ... as to arouse suspicions ... they

were generated by a different mechanism”
[Hawkins '80]

. “... deviate markedly from other members of
sample in which it occurs”  [Grubbs '69]
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Outlier Detection: Use-cases
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Sources: https://towardsdatascience.com/detecting-hate-tweets-twitter-sentiment-analysis-780d8a82d4f6, https://www.google.com/url?q=https://www.the-digital-insurer.com/insurance-fraud-digital-age-neural-technologies-white-

paper/&sa=D&source=hangouts&ust=1620381203046000& usg=AFQjCNGpeSoWMOxriROYhGg3vXzrhdisLg,, https://www.google.com/url?g=https://www.internetmatters.org/hub/news-blogs/stopping-the-spread-of-fake-news-on-popular-online-

platforms/&sa=D&source=hangouts&ust=1620381203046000&usg=AFQJCNHTMHYACxrqcOX0A-vTMcTpM3_Fxw , https://www.investopedia.com,, https://traderdefenseadvisory.com/,, https://www.google.com/url?g=https://blog.volkovlaw.com/2015/01/healthcare-fraud-
aggressive-enforcement-strategies/&sa=D&source=hangouts&ust=1620386116751000&usg=AFQJCNGw2wgs6uMWfIB8D2L6gXeJWPnibg,
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Outlier Detection

Inconsistent with normal
observations

Normal instances

\
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Outlier Detection Ranked

Normal instances

\*ﬁ%

instances
Outlier
® &
@‘/ " Human
Detector
expert

designed to spot/flag rare, minority samples

- e.g. suspicious activity, abnormal heart rate, etc.
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Outlier Detection Ranked

Normal instances

\‘;9‘

instances
Outlier
® &
@‘/ " Human
Detector
expert

designed to spot/flag rare, minority samples

- e.g. suspicious activity, abnormal heart rate, etc.

facilitates auditing (“policing”’) by human experts

- e.g. Stop-and-frisk in automated surveillance flagged instances

- Human-labeled data for downstream learning tasks
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Outlier Detection Ranked

Instances
QOutlier
\ ® 72

Normga Human

expert
Assumes outlierness reflects

true riskiness.

e des\ s

- e.g. suspicious activity, abnormal heart rate etc.

facilitates auditing (“policing”) by human experts

- e.g. stop-and-frisk in automated surveillance flagged instances

- human labeled data for downstream learning tasks
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Roadmap

# - Problem: Fairness in OD

. Desiderata
. Fairness-aware OD

. Evaluation
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Bias in Outlier Detection
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Bias in Outlier Detection
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Higher outlier scores as
sample size of PV = b
is decreased
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Bias in Outlier Detection

Simulated dataset
- equal sized groups

- groups induced by
PV=aand PV =D
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Bias in Outlier Detection

- Societal minorities may be statistical minorities

- defined by protected variable (PV) :
race/ ethnicity/gender/age etc.

"m e
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Bias in Outlier Detection
- Disparate Impact

+ Unjust flagging leads to “over-policing”

- Feedback loop results in further skewness

Biased Biased feedback

training

/
: o
Biased 9 /_\u
algorithm ‘ Biased
outcome
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Fair Outlier Detection

. Given:
> Observations X = {X;}i.; & R
> PV = {PV;}_,, PV; € {a, b}

o PV; = a identifies majority group

. Build a detector that estimates outlier scores S
and assigns outlier labels O s.t.

i.  assigned labels and scores are “fair” w.r.t. the PV

i.  higher scores correspond to higher riskiness encoded
by the underlying (unobserved) true labels Y
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Fair Outlier Detection

. Given:

What constitutes a “fair” outcome in OD?

A 4
. Build a detector that estimates outlier scores S an
assigns outlier labels O s.t.

i.  assigned labels and scores are “fair” w.r.t. the PV

i. higher scores correspond to higher riskiness encoded
by the underlying (unobserved) true labels Y
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Literature on Fairness in OD

- Algorithmic fairness — mostly for supervised ML
o Unsupervised OD adds challenge

o Numerous notions of fairness and associated
incompatibility results

- Possible approach: pre-processing

> re-purpose (unsupervised) fair representation learning
I.  PV-obfuscated/masked new embeddings

2. Re-weighted/adjusted data distributions
- Issue: an isolated/detached step to OD task at hand
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Literature on Fairness in OD

- Countably-few work on fairness for OD

I. A Framework for Determining the Fairness of Outlier Detection.
[Ravi & Davidson, ECAI 2020]

< Quantify/measure (detect) the (un)fairness of OD model outcomes
post hoc (i.e. proceeding detection)

2. Fair Outlier Detection. [P & Abraham, WISE 2020]
3.  Towards Fair Deep Anomaly Detection. [Zhang & Davidson, FAccT 2021]
4. Deep Clustering based Fair Outlier Detection. [Song+, KDD 2021]

5. Fairness-aware Outlier Ensemble. [Liu+, 2021 - unpublished]
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Roadmap
- Introduction

« Problem: Fairness in OD

‘ . Desiderata

. Fairness-aware OD

. Evaluation
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Proposed Desiderata

D 1. Detection effectiveness detection @

performance

D2. Treatment parity I

D3. Statistical parity (SP) fairness %
> related

D4. Group fidelity

D5. Base rate preservation ~ /
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Proposed Desiderata @

DIl. Detection effectiveness - accurate at detection
P(Y=|\0=|) > P(Y=|)

» related to detection performance

Carnegie Mellon
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Proposed Desiderata @i@

D2. Treatment parity — decision avoids use of PV
P(O=I|X) = P(O=I|X, PV=v), Vv

> ensures OD-decisions are “blindfolded” to PV

Carnegie Mellon 21



Proposed Desiderata @i@

D2. Treatment parity — decision avoids use of PV
P(0=1|X) = P(0=1|X, PV=v), Vv
» ensures OD-decisions are “blindfolded” to PV

> (1) may allow discriminatory OD results for minority:

o due to several other features that (partially-)redundantly
encode the PV (e.g. zipcode & race).

o OD will use the PV indirectly, through proxy features.

Carnegie Mellon =



Proposed Desiderata gi@

DIl. Detection effectiveness

D2. Treatment parity
D3. Statistical parity (SP) - decision independent of PV

P(0=1|PV=qa) = P(O=1|PV=b)

» a.k.a. demographic parity, or group fairness

Carnegie Mellon 23



Proposed Desiderata gi@

D3. Statistical parity (SP) - decision independent of PV
P(O=I1|PV=a) = P(O=1|PV=b)

— fraction of minority (majority) members in flagged set
is the same as
fraction of minority (majority) in overall population.

fra=fry (SP) & P(PV =a|O=1)=P(PV =a) and
P(PV =b|O=1)=P(PV =D) .
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Proposed Desiderata gl@

D3. Statistical parity (SP) - decision independent of PV
P(O=I1|PV=a) = P(O=1|PV=b)
— P(PV =a|lO=1) =P(PV =a) and
P(PV =b|O=1)=P(PV =D) .

» Derives from “luck egalitarianism” : [Carl Knight, 2009]
counteract the distributive effects of “brute luck”
— by redistributing equality to those who suffer through
no fault of their own choosing of race, gender, etc.

25
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Proposed Desiderata @i@

D3. Statistical parity (SP) - decision independent of PV
P(O=I1|PV=a) = P(O=1|PV=b)

» permits “laziness”; may disadvantage some groups
despite SP  [Barocas et al.’2017]

B E& U w PV € {eo, 0}
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Proposed Desiderata gi@

DIl. Detection effectiveness

D2. Treatment parity
D3. Statistical parity (SP) - decision independent of PV

P(0=1|PV=qa) = P(O=1|PV=b)

» permits “laziness” [Barocas et al. 2017]

E E@ W ﬂ PV € {eo, 0}

SJELIELIRLIBLIRLARILIRL.
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Proposed Desiderata gi@

D 1. Detection effectiveness
D2. Treatment parity
D3. Statistical parity (SP)

D4. Group fidelity - decision faithful to ground-truth
P(O=I1|Y=I, PV=a) = P(O=I|Y=I, PV=Db)

» penalizes “laziness”
» equivalent to the so-called Equality of Opportunity”

» same true positive rate (TPR) for all groups

Carnegie Mellon 28



Proposed Desiderata gi@

D 1. Detection effectiveness
D2. Treatment parity
D3. Statistical parity (SP)

D4. Group fidelity - decision faithful to ground-truth
P(O=I1|Y=I, PV=a) = P(O=I|Y=I, PV=Db)

» requires access to the ground-truth

o unavailable for unsupervised OD task
» D3 (SP) and D4 are incompatible [Barocas et al.’2017]

Carnegie Mellon 29



Proposed Desiderata @i@

D4. Group fidelity - decision faithful to ground-truth
P(O=I1|Y=I, PV=a) = P(O=I|Y=I, PV=Db)
» approx.: enforce group-level rank preservation
» fidelity to within-group ranking from the BASE model
> Tppoy = Tpy=y VYV E{a, b}

» 1 denotes ranking

Carnegie Mellon 30



Proposed Desiderata @i@

D5. Base rate preservation - equal base rate
in flagged instances and the population

P(Y = 1|0 = |, PV =v) = P(Y =I||PV =v), Vv € {a, b}
N y

4
Base rate/Prevalence

for PV =v

Carnegie Mellon 31



Proposed Desiderata @i@

D5. Base rate preservation - equal base rate
in flagged instances and the population

P(Y = 1|0 = |, PV =v) = P(Y =I||PV =v), Vv € {a, b}

» Incompatibility: given OD satisfies DI and D3,
it cannot also satisfy D5
(See Claim 1 in the paper)

Carnegie Mellon 32



Proposed Desiderata gi@

D5. Base rate preservation - equal base rate
in flagged instances and the population

P(Y = 1|0 = |, PV =v) = P(Y =I||PV =v), Vv € {a, b}

> relaxation: preservation of the ratio of base rates
o Leads to overestimation of true group-level base rates (Claim 2)

» still, D5 cannot be enforced: relies on ground-truth

Carnegie Mellon 33



Proposed Desiderata @

DI|. Detection effectiveness
D2. Treatment parity
D3. Statistical parity (SP)

D4. Group fidelity

D5. Base rate preservation

Carnegie Mellon
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Proposed Desiderata @

D 1. Detection effectiveness

D2. Treatment parity

\

F v’ Enforceable

Fair OD mode/ follows the proposed desideraia

D4. Group fidelity

D5. Base rate preservation

Carnegie Mellon
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proposed proxy
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Literature on Fairness in OD

- Countably-few work on fair OD

I, Fair Outlier Detection. [P and Abraham, WISE 2020]
> Seminal paper
> disparate treatment (i.e. uses PV) at decision time (may be
unlawful for some settings!)
> prioritizes statistical parity (SP); may permit “laziness”
» not end-to-end but rather heuristic

2. Towards Fair Deep Anomaly Detection. [Zhang &
Davidson, FAccT 2021]

> focus on SP
> one-class objective & adversarial training for PV prediction

Carnegie Mellon 36



Literature on Fairness in OD

- Countably-few work on fairness for OD

3. Deep Clustering based Fair Outlier Detection. [Song+,
KDD 2021]

> Again, sole focus on SP

4. Fairness-aware Outlier Ensemble. [Liu+, 2021; not publ.]
> assumes the outlier scores “obtained from the base outlier
ensemble method is an optimal result” (why do anything if

this is true!)
> notions of group fairness : focus on SP only &
individual fairness : similarity “based on original feature

values excluding sensitive features” (proxy variables!)

37
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Roadmap
. Introduction
- Problem: Fairness in OD

. Desiderata

‘  Fairness-aware OD

. Evaluation
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Fairness-aware Outlier detection
. Given:
> Observations X = {X;}/-, € R
> PV = {PV;}\_,, PV; € {a, b}

o PV; = a identifies majority group

» Build a detector that estimates outlier scores §
and assigns outlier labels O to achieve

. P{Y=110=1)>P{=1) [DI]
i. P(O=1|X)=P(0=1|X, PV=v), Vv [D2]
i. P(O=I||PV=a)= P(0O=I|PV=b) [D3]
v, Tpy2y = Tpy=y; YV, [D4]

BASE is fairness-agnostic detector
39

Carnegie Mellon



FAIROD

- Instantiates deep-autoencoder as BASE detector

| | D

Reconstruction error
as outlier score

- Minimizes the regularized loss:

L = o Lgase + (1-a) Lsp L 4 LGF
—— —— ——

Reconstruction Statistical Parity Group Fidelity

Carnegie Mellon
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FAROD " = "~ = =

Reconstruction Statistical Parity Group Fidelity

N

Loase = ) 11X = GOXG)II3

i=1

(Zf\il s(Xi) — /Js) ( fil PV; — ,UPV)

Os Opv

LGF = Z 1 - Z

2SBASE (Xl) _ 1

X exXmy 1085 (1+ Xx, expy_, sigm(s(Xe) = 5(X,))) - IDCGpy=y

See paper for details : https://arxiv.org/pdf/2012.03063.pdf
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https://arxiv.org/pdf/2012.03063.pdf

Roadmap
- Introduction
» Problem: Fairness in OD
- Desiderata

. Fairness-aware OD

‘ - Evaluation
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Datasets

Dataset N d PV PV=b |Xpyzal/|Xpy=p| % outliers Labels
Adult 25262 11 gender female 4 5 {income < 50K, income > 50K}
Credit 24593 1549 age age < 25 4 5 {paid, delinquent}
Tweets 3982 10000 racial dialect African-American 4 5 {normal, abusive}
Ads 1682 1558 simulated 1 4 5 {non-ad, ad}
Synth1 2400 2 simulated 4 5 {0,1}
Synth2 2400 2 simulated 4 5 {0,1}
. v
Synthetic o g
datasets .. ,
o N 01 v
@ e v
3 —
10 - 2 2
& L
’ —6
v
0 7 v
l':’(l l-'I(l l('iﬂ l;il) ‘2(')1) '2':’() —'lll —") ('l :) l'(l
Feature 1 Feature 1
© Inlier, PV =a v  Qutlier, PV =a ©® Inlier, PV =a v  OQutlier, PV =a
Inlier, PV =b v Outlier, PV = b Inlier, PV =b v Outlier, PV = b
Synth1 Synth2
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Baselines

+ BASE — fairness-agnostic deep anomaly detector

Preprocessing based methods

- RW — reweights instances [Kamiran et al.’2012]

. DIR — edits features to de-correlate PV
[Feldman et al.”2015]

- LFR — latent representation obfuscating PV information
[Zemel et al.”2013]

- ARL — latent representation via adversarial training
[Beutel et al.”2017]

Carnegie Mellon 44



Evaluation Measures

1

P (0O=1|PV =a)

+ Fairness = min (r, —) ,where r = 3 (O=T|PV = b)

r

[D3]

. GrOUP Fldellt)’ — HM(NDCGPV:a, NDCGPV:b)

o AUCP = )
. AUC-ratio = 7=a
: APpy—
. AP-ratio = — =4
APpy=p

=

Carnegie Mellon

[D4]

Label-aware parity measures
used when ground-truth
labels are available
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Fairness
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Fairness . -

Label-aware
parity measures

vs Fairness
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Fairness-accuracy trade-off
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Ablation study

+ FairOD-L : only SP-based regularization (permits “Laziness”)

. FairOD-C : Correlation-based group fidelity regularization

1.0 1 (& 101 @ ® 0 o 00
b ¢
0.9 0.9 - Y L g T L Y
2 2z
AT Y O 4o &
T o 2 3
iC © 0.8 + ™ % 0.8 o
o9 o m
o< oo
S—r 0.7 O 0.7
C O — Y v e
0.6 - 0.6 -
0-5 1 1 T 1 1] 0.5 1 T T 1 1]
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Fairness Fairness

@ BASE Y FAIROD-L g FAIROD-C 8 FairOD
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Conclusion

v Guiding desiderata for, and concrete formallzatlon
of the fair OD problem % M(M

v Introduced well-motivated fairness criteria %

L = a Lpase + (1-a) Lsp Ty LGF
/ Pro Posed FAIROD Reco?st/r:;tion Statist?;l—;arity GrO;;i—c;,lity
o End-to-end detector w/ prescribed criteria
o Accurate detection that T
achieves fairness goals = *
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Code, paper, and slides
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