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Unsupervised outlier detection is a solution
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Few “ground truth” labels for 
model training or evaluation
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Unsupervised Outlier 
Detection:
Isolation Forests
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Isolation Forest

• Proposed by Liu et al. in 2008

• Ensemble of randomly created 
binary trees

• Tree structure captures multi-
dimensional feature distribution

• Future instances can be scored

Outliers are 
easier to isolate

Inliers are harder 
to isolate
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Isolation Forest Advantages 

Performant
A top performer in 
recent 
benchmarks

Scalable
Low computation 
and memory 
complexity

Fewer assumptions
No assumptions 
about data 
distributions or 
distance metrics

Widely used
Active academic 
research and 
industry use
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Isolation forest modeling 
process
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Isolation forest modeling process

Behaviors of interest Feature engineering Seed labels Model training
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• Use intuition of domain 
experts

• Leverage known 
examples from the 
intended outlier class

• Curate seed labels

• Generate using basic 
heuristics on features

• Enrich with other sources 
of partial labels

• Use seed labels to 
evaluate relative 
performance 

• Use random sampling 
and manual review to 
estimate the precision of 
the final model

• Estimate recall by 
comparing against seed 
labels

• Improve precision using 
simple filters on isolation 
forest output

• Create features that 
separate normal behavior 
from behaviors of interest

• Construct features 
carefully: defaults for 
missing data, value 
range, transformations…

• Reduce the number of 
unimportant features
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• Create features that 
separate normal behavior 
from behaviors of interest

• Construct features 
carefully: defaults for 
missing data, value 
range, transformations…

• Reduce the number of 
unimportant features



Isolation forest output
We use outliers identified by an isolation forest model in multiple ways
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Measurement
Outliers are used as the 
foundation of our anti-
automation metrics

Labels
Outliers identified with high-
confidence are used as 
training labels for supervised 
models



Identification of abuse across a wide variety of product surfaces
Current isolation forest production use cases at LinkedIn
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Invitations MessagesProfile scraping Search InMails



Results
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Normal Day
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Behavior of two example real accounts using automation tools
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Fake Account 
Attack Day
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Fake Account 
Attack Day
A major fake account attack 
using abusive automation
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Behavior of two example fake accounts from the attack
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Fairness and 
Transparency
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Ensuring model fairness

• Disparate treatment: No protected variables in the model; behavioral features only

• Statistical parity: Bad actors can control the distribution of protected variables in 
the abusive population -> statistical parity is not always a good fairness measure

• Model fairness

• Use the direct output of the model for measurement only

• Establish a process for precision monitoring

• Monitor downstream supervised models and member appeals for fairness
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Ensuring model transparency
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• Use data visualizations for explainability

• Feature importance
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Conclusions
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Unique Challenges in Anti-Abuse
Unsupervised outlier detection is a solution

Labels
Few “ground truth” labels for 
model training or evaluation

Solution: Unsupervised outlier 
detection is a natural fit for 
challenges with few labels
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Solution: As long as attacker 
behavior is different than 
normal user behavior, it can 
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Open-source isolation-forest 
Library @ LinkedIn

• Scala/Spark

• Developed by LinkedIn Anti-Abuse AI

• Distributed training and scoring

• Compatible with spark.ml

• Open sourced and available on GitHub

• Artifacts in Maven Central

• Our library powers Microsoft’s MMLSpark Isolation Forest

1. https://github.com/linkedin/isolation-forest
2. https://engineering.linkedin.com/blog/2019/isolation-forest
3. https://github.com/Azure/mmlspark
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Thank you

James Verbus
jverbus@linkedin.com
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