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Welcome!

We are the Graph Exploration and Mining at Scale (GEMS) lab at the University of Michigan,
founded and led by Danai Koutra. Our team researches important data mining and machine
learning problems involving interconnected data: in other words, graphs or networks.

From airline flights to traffic routing to neuronal interactions in the brain, graphs are ubiquitous
in the real world. Their properties and complexities have long been studied in fields ranging
from mathematics to the social sciences. However, many pressing problems involving graph
data are still open. One well-known problem is scalability. With continual advances in data
generation and storage capabilities, the size of graph datasets has dramatically increased,
making scalable graph methods indispensable. Another is the changing nature of data. Real
graphs are almost always dynamic, evolving over time. Finally, many important problems in the
social and biological sciences involve analyzing not one but multiple networks.

So, what do we do?

The problems described above call for principled, practical, and highly scalable graph
mining methods, both theoretical and application-oriented. As such, our work connects to
fields like linear algebra, distributed systems, deep learning, and even neuroscience. Some of
our ongoing projects include:

o Algorithms for multi-network tasks, like matching nodes across networks
Learning low-dimensional representations of networks in metric spaces
Abstracting or “summarizing” a graph with a smaller network
Analyzing network models of the brain derived from fMRI scans
Distributed graph methods for iteratively solving linear systems
Network-theoretical user modeling for various data science applications

We're grateful for funding from Adobe, Amazon, the Army Research Lab, the Michigan
for Data Science (MIDAS), Microsoft Azure, the National Science Foundation (NSF), an

Interested?

If you’re interested in joining our group, send an email with your interests and CV to g

opportunities@umich.edu.
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Graphs are everywhere!
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SUMMARIZATION of Big Datasets is Crucial!
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What is graph summarization? [ mmm—"

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,
Ann Arbor

While advances in computing resources have made processing enormous amounts of data possible, human
ability to identify patterns in such data has not scaled accordingly. Efficient computational methods for con-
densing and simplifying data are thus becoming vital for extracting actionable insights. In particular, while
u u u data summarization techniques have been studied extensively, only recently has summarizing interconnected
r a h S u m m a r I Z at I O n S e e k S t O f I n d O data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art
" methods for summarizing graph data. We first broach the motivation behind and the challenges of graph sum-
marization. We then categorize summarization approaches by the type of graphs taken as input and further
organize each category by core methodology. Finally, we discuss applications of summarization on real-world
graphs and conclude by describing some open problems in the field.

| L ]
® CCS Concepts: » Mathematics of computing — Graph algorithms; « Information systems — Data
I I l I mining; Summarization; - Human-centered computing — Social network analysis;  Theory of com-
, putation — Unsupervised learning and clustering; « Computing methodologies — Network science;

Additional Key Words and Phrases: Graph mining, graph summarization

ACM Reference format:

+ often in the form of an aggregat ed ors pars ified grap h, e Lo TSt Al Dihe ad D Kot 201, Gragh Summarizaton ethods and Appic

A Survey. ACM Comput. Surv. 51, 3, Article 62 (June 2018), 34 pages.
/doi.org/10.1145/3186727

or a set of structures e———

As technology advances, the amount of data that we generate and our ability to collect and archive
such data both increase continuously. Daily activities like social media interaction, web browsing,
product and service purchases, itineraries, and wellness sensors generate large amounts of data,

e Wwhich reveals patterns iNn the Origina| data and bames i eoa Dien e e

velocity call for data summarization, one of the main data mining tasks.
Since summarization facilitates the identification of structure and meaning in data, the data
mining community has taken a strong interest in the task. Methods for a variety of data types

Y. Liu and T. Safavi contributed equally to this article.

. f. t t | t t .
preserves specitic structural or o her properties,
- s . . This material was based on work supported in part by the National Science Foundation under grant IIS 1743088, Trove, and
iversity of Michigan. Any opinions, findings, and conclusions or recommendations expressed in this material are
epending on the application domain e
]

The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation here on.
Authors’ addre Liu, T. Safavi, A. Dighe, and D. Koutra, Bob and Betty Beyster Building, 2260 Hayward St, Ann Arbor,
MI 48109; emails: {yikeliu, tsafavi, adighe, dkoutra}@umich.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

. © 2018 ACM 0360-0300/2018/06-ART62 $15.00
https://doi.org/10.1145/3186727
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Why graph summarization? A . A

YIKE LIU, TARA SAFAVI, ABHILASH DIGHE, and DANAI KOUTRA, University of Michigan,
Ann Arbor

While advances in computing resources have made processing enormous amounts of data possible, human
ability to identify patterns in such data has not scaled accordingly. Efficient computational methods for con-
densing and simplifying data are thus becoming vital for extracting actionable insights. In particular, while

= data summarization techniques have been studied extensively, only recently has summarizing interconnected

[ ) R e d u Ct I O n Of d at a VO I u m e + St O r a e data, or graphs, become popular. This survey is a structured, comprehensive overview of the state-of-the-art
methods for summarizing graph data. We first broach the motivation behind and the challenges of graph sum-

marization. We then categorize summarization approaches by the type of graphs taken as input and further

organize each category by core methodology. Finally, we discuss applications of summarization on real-world
graphs and conclude by describing some open problems in the field.

L]
¢ e g feWe r I/O O p e rat I O n S CCS Concepts: «+ Mathematics of computing — Graph algorithms; « Information systems — Data
[ =y

mining; Summarization; « Human-centered computing — Social network analysis;  Theory of com-
putation — Unsupervised learning and clustering; - Computing methodologies — Network science;

Additional Key Words and Phrases: Graph mining, graph summarization

L []
» Speedup of algorithms + queries =
Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. 2018. Graph Summarization Methods and Applica-

tions: A Survey. ACM Comput. Surv. 51, 3, Article 62 (June 2018), 34 pages.
https://doi.org/10.1145/3186727

* Interactive analysis p—

As technology advances, the amount of data that we generate and our ability to collect and archive

such data both increase continuously. Daily activities like social media interaction, web browsing,

[] [] product and service purchases, itineraries, and wellness sensors generate large amounts of data,

() I n f I u e n C e a n a I yS I S a n d u n d e rSt a n d I n g the analysis of which can immediately impact our lives. This abundance of generated data and its
velocity call for data summarization, one of the main data mining tasks.

Since summarization facilitates the identification of structure and meaning in data, the data

mining community has taken a strong interest in the task. Methods for a variety of data types

* Noise elimination -> reveals patterns

This material was based on work supported in part by the National Science Foundation under grant IIS 1743088, Trove, and
the Unive: of Michigan. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation or other funding parties.

* Privacy preservation

Network - X *Query Efficiency
type Static Dynamic +Compression
*Visualization
«Pattern Discovery
Labeled *Influence Analysis

Applications

Open Problems

*Richer Data
«Streaming /

Structure only Structure + labels Temporal structure
Grouping + Grouping + Grouping Incremental
Compression » Compression » Compression Summarization
Simplification * Influence * Influence «Automated Insight
Influence Extraction

Core techniques employed EvelEiien
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Summarizing Large Networks: Overview
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This talk: Summarization Meets Outlier Detection
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Knowledge graphs (KGs)

store general information about the world in the structure of a graph

‘ Book O Poem O Author ‘ Country

Anna

) Russia
Karenina Leo USA
Tolstoy
War &
Peace Franken
stein 299

edge = triple (subject node or head,
predicate or relation,

% GEMS LAB object node or tail) 13



Knowledge graphs (KGs)

can be represented as labeled,

Label Matrix
‘ Book Q Poem Author ‘ Country
9

- O®\® Il
Anna Russia Q,& =
Karenina Leo USA QY =
Tolstoy

Node Labels

Nodes

War &
Peace Franken iy
stein 299 il
T - Nodes
Nodes
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D0I:10.1145/3331166 _
Many practical implementations
impose constraints on the links in
knowledge graphs by defining a schema .
or ontology. For example, a link from a
movie to its director must connect an

Article development led by
queue.acm.org

object of type Movie to an object of type
Person. In some cases the links them-

BY NATASHA NOY, YUQING GAO, ANSHU JAIN, selves might have their own properties:

ANANT NARAYANAN, ALAN PATTERSON, AND JAMIE TAYLOR alink connecting an actor and a movie
might have the name of the specific

role the actor played. Similarly, a link
connecting a politician with a specific .
I n d ustry-sca le role in government might have the time -
period during which the politician held
that role. /
Knowledge graphs and similar struc-
tures usually provide a shared substrate
of knowledge within an organization,
allowing different products and appli-
cations to use similar vocabulary and
ra s- to reuse definitions and descriptions
| that others create. Furthermore, they
usually provide a compact formal rep-
resentation that developers can use to
essons a n infer new facts and build up the knowl-
edge—for example, using the graph
connecting movies and actors to find
a e nges out which actors frequently appear in
movies together.
This article looks at the knowledge
graphs of five diverse tech companies,
comparing the similarities and differ-
ences in their respective experiences of . '
building and using the graphs, and dis-
cussing the challenges that all knowl- "

KNOWLEDGE GRAPHS ARE critical to many enterprises edge-driven enterprises face today.
today: They provide the structured data and factual The collection of knowledge graphs l
K “1 4 10’; that drive m: roducts and make tt discussed here covers the breadth of
knowledge that drive many products and make them applications, from search, to product
more intelligent and “mz I descriptions, to social networks:

In general, a knowledge graph describes objects > Both Microsoft's Bing knowledge

an 27 & ) graph and the Google Knowledge
of interest and connections between them. For Graph support search and answering
example, a knowledge graph may have nodes for a questions in search and during conver-

i6. the actors in this o } » director. 2 1 sations. Starting with the descriptions

movie, the actors 1n this movie, [-lL director, and so and connections of people, places,
on. Each node may have properties such as an actor’s | things, and organizations, these graphs

name and age. There may be nodes for multiple i:‘:::;d" general knowledge about the

movies involving a particular actor. The user can then | . pacebook has the world's largest

traverse the knowledge graph to collect information | social graph, which also includes in-

yn all the movies in which the actor appeared or. if formation about music, movies, celeb-
oA 1 8 2 eac appeated or, 1 rities, and places that Facebook users

appl irected. care about.



Applications of KGs

Reading

Question Answering & Chatbots Automatic Fact Checking Comprehension

Was Emily
Dickinson really
born in the US?

Leo Tolstoy

@%j

Semantic search Financial applications
Biomedical applications Recommendation systems
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KGs are constructed via

Crowd
. Book Poem Author Country
Sourcing o (EImIeRX =D

Anng RusSia Nobody!
Karenina Leo USA Who are

Tolstoy you?

War &

Peace Franken
stein 299

Web o —
Crawling 'E’j:':

M % Gao, Liang, Han, Yakout, Mohamed. Building a Large-scale, Accurate and Fresh Knowledge Graph. Tutorial @ KDD’18.
CSE S b Zalmout, Zhang, Li, Liang, Dong. All You Need to Know to Build a Product Knowledge Graph. Tutorial @ KDD'21.



...which leads to

errors and miss some information

‘ Book O Poem O Author ‘ Country

Anna
Karenina




Current Approach

[ Knowledge Graphs

Problems
errors missing info
Solutions \/
[ Tailored ]
Techniques
Problems
Development ImpeEsiole Resource
for Unknown )
Cost Intensive
Errors
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https://github.com/GemsLab/

Current Approach

[ Knowledge Graphs

Problems
errors missing info
Solutions \/
[ Tailored ]
Techniques
Problems
Development ImpeEsiole Resource
for Unknown )
Cost Intensive
Errors

Xe, A - ,z ‘ l. I .

Proposed Approach

[ Knowledge Graphs ]

Problem

. errors & missing info

Solutionl

[ inductive summarization ]

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] https://github.com/GemsLab/KGIST 20
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KGisT: Knowledge Graph Inductive SummarizaTion

Find a concise summary M of knowledge graph G,
consisting of inductive, soft rules s.t.
min L(G,M) = L(M) + L(G|M)

| |
bits to describe M  bits to describe G with M

Anna

Karenina Leo
Tolstoy

War &
Peace Franken

stein

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 21




RUIe g — (Lg, Xg) = (root label, children rules)

We formulate rules recursively as rooted, directed, and labeled graphs
 Arule asserts things about nodes with the root labels, L,

Characte,

.. S
Fictional
family.
NS

Fictional

% %GEMS LAB [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 22




Correct assertions A & Exceptions c/lgg)

Guided traversals
that a rule implies Failed guided traversals

277

@ Syntactic

@ Structures
War & T 2?7?

0/konsKys
Peace 2 297
publishedIn %
1

Leo Drubetskoys USA

Tolstoy, Russia .
\ . U4 . . .
instantiation of rule for _@_ Exceptions indicate errors
book “War & Peace” =" or missing information

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 23




KGist: Knowledge Graph Inductive SummarizaTion

Anna

Karenina Leo EXCGp’[IOI‘lS +
unexplained
War & partS

Peace Franken
stein

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 24




Deriving L(G,M)=L(M) + L(G|M)

4 _ )
Hey Alice, could

you tell me _

\about your KG? Bob (receiver)

Alice (sender)




MDL Model: Overview

/Sure! I’ll send:

1) Model-independent information
2) A model M Bob
3) Any error the model makes Y.

2N

e

Ok, send the model the minimizes *#
L(G,M) = L(M) + L(G|M) |

&

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 26




MDL Model: L(G,M) = L(M) + L(G|M)

War & = War & @
Peace B/konsi Bolkonsky:

Scleile ‘
Drubetskoys Drubetskoy:
Leo RUSS ‘ Structures Leo y S 9
Tolstoy, ussia Tolstoy, 7

USA

e

Model independent info:
# nodes, # edges, node ids ...

% B é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST




MDL Model: L(G,M) = L(M) + L(G|M)

e T

Peace Bolkonskys
.
Leo Drubetskoys SSyntactlc
i tructures
Tolstoy, Russia

Book

Bolkonsky:

Drubetskoys
S q

. War &
Fictional Pegce
family
Leo
Tolstoy, @
Country

USA E

= 10g(2 * [Ly[? + ILe| + 1) + ) (L(g) + L(A@))
| |

|

# rules

gEM

rule rtion

—_

=

M cemsue [ [Caleb Belth, Xinyi Zheng, et al. WWW '20]

github.com/GemsLab/KGIST 28




MDL Model: L(G,M) = L(M) + L(G|M)

War & E Book War & w
Peace B /konsi Fictional Peace Bolkonskys
family

Syntactic
Leo Drubetskoys y Leo Drubetskoys
Russia Structures : S S
Tolstoy, Tolstoy, Russia
USA a

=log(2 * [Ly|* + |Lel + 1) + z (L(g) + L(AY
Y geM Y

/#ru'es

Country

rule rti

Great, now let me
find all the books! 8

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 29




MDL Model: L(G,M) = L(M) + L(G|M)
* Alice continues with the assertions, traversals etc...

* Done with the definition of L(M)

-
= &

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST




MDL Model: L(G,M) = L(M) + L(G|M)

(

|
= L(L™) + L(A")

L

I'll send the 1sin )
L and A that the

rules didn’t reveal |

Book

Fictional
family

N

Q@ ".‘

Nodes

A

Nodes

Drubetskoys
Russia N y

Leo
Tolstoy;

Node Labels

Bolkonskys

°e

Bob

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 31




MDL Model: L(G,M) = L(M) + L(G|M)

There you go! J

M GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20]

CSE ©

Fictional
family

- =N

github.com/GemsLab/KGIST

War & Bolkonsk E
Peace RIKONSHE

.
Leo Drubetskoys Syntactic

Structures

Tolstoy Russia

USA

ANLE
TN
.I\.;

f
*




KGisT: Knowledge Graph Inductive SummarizaTion

Find a concise summary M of knowledge graph G,
consisting of inductive, soft rules s.t.

in L(G,M) =L(M) + L(G|M
min LG M) = LN + LGIM)

| |
bits to describe M  bits to describe G with M

. Book O Poem O Author ‘Country
1 ‘::‘

Anna Russia

Karenina Leo USA
Tolstoy you?
War & 297
Peace Franken
stein 299

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 33




KGIST Method: Overview

1. Generate candidate rules

Book Mountain

Person @ City @

performs manufacture

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 34




KGIST Method: Overview

1. Generate candidate rules

2. Rank candidate rules

<~ Based on how much they help explain/compress the KG
\AL(G'MO U {g})/=\L(G|MO)J— {‘(GlMO U {g}) Book Mountain

how much g explains # bits w/o g # bits with g

Person,
Musician

@ City @

=

performs

e

z'E GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 35




KGIST Method: Overview

Cost L(G,M)
L(G, My)

1. Generate candidate rules

2. Rank candidate rules
<~ Based on how much they help explain/compress the KG

3. Select rules

L(G,M,)

L(G, M,
L(G, M,
L(G, M5)

+ Based on minimizing L(G, M)

Person, City

Book Mountain I
Musician

wiittenBy [l locatedin

00O
@ @

o X

% %GEMS LAB E [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST 36




KGIST Method: Overview

1. Generate candidate rules

2. Rank candidate rules
<~ Based on how much they help explain/compress the KG

3. Select rules

<+ Based on minimizing L(G, M) Mountan Mountain
4. Refine rules

+ Merging and nesting @o Place ) =3 @

Book Book Book
 m— | :
O = w
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Proposed Approach:

[ Knowledge Graphs ]

Problems
KGIST
errors missing info
[ Knowledge Graphs ]
Soluti \/
S Problem 1
Tallored
Techniques [ : errors & missing info ]
Solution 1
Problems

[ inductive summarization ]

Development lufzerlells Resource
for Unknown

Cost Intensive
Errors

% }Z)SGEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] https://github.com/GemsLab/KGIST 38

()



https://github.com/GemsLab/

KGIsT Anomaly Scores

 Anomalous entities: violate many rules
<~ MDL intuition: many bits to describe a node as an exception

1 |A)] N .
— z log = # bits pointing out v as an exception

Anna Russia
Karenina Leo USA
Tolstoy
War & \
Peace Franken
stein 299
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KGIsT Anomaly Scores

. . violate many rules
<~ MDL intuition: many bits to describe a node as an exception

 Anomalous triples: unexplained edges (.(¢|m)) + anomalous endpoints

1(s,p,0) = n(s) +1(0) + n®)(s,p, 0)

| Y
node endpoints predicate

unexplained triple

L (VP IL AN | .
n® (s,p,0) = { |4 g 1A | 5,0,p = # bits describing
0 otherwise

[Caleb Belth, Xinyi Zheng, et al. WWW ’20] https://github.com/GemsLab/KGIST
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Country

KGisT compresses real KGs significantly ___

~'o
o..':.' yak owledge @

DBOO located in
NELL
Freq Freq
674.51% 896.33%

Browse the Knowledge Base!

Freq 91.46%
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KGist detects various types of errors !

Supervised Unsupervised )
Metric ComplEx TransE SDValidate AMIE+ KGist FREQ KGIsT+m
AUC g Select g% of

P@100 all nodes and,
R@100 < 0.0188
F1@100 < 0.0369
remove label add label inject 1 or 2 edges replace label

billionaire,

ildin .

’ Stillielini) city

person

n Des Vellow KGIST performs

Bill y h’ | Moines Stone best across all
Gates ana types of anomalies.
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KGisT identifies where information is missing

1. Remove entities / nodes (e.g. Mary Shelley)

Anng Russia
Karenina Leo USA
Tolstoy
w»
War & Q Q
Peace Franken ‘
stein
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KGisT identifies where information is missing

Person,
Musician

performs

1. Remove entities / nodes (e.g. Mary Shelley)

2. Run KGIST on perturbed graph
3. Find where entities are missing

Anna

. Russia
Karenina - _
Tolstoy
e \J‘\J‘m;i@‘ﬂ%\l
Peace “ranker

stein
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Dataset

Recall for
location + label
of missing
node

Anna
Karenina

Leo
Tolstoy

War &
Peace Franken

stein

Metric

LP

Supervised

AMIE+C [16]
0.6587 + 0.03

08187 £0.01

KGisT identifies where information is missing

Unsupervised
Freq KGIsT

0.4589 + 0.02 | 0.7598 + 0.02
0.3924 £ 0.02 | 0.6636 = 0.01

0.8049 + 0.01 | 0.9288 + 0.00
0.7839 + 0.01 pRUESHIEE T )

KGIST significantly
outperforms the baselines.
It complements LP methods.

% GEMS LAB é [Caleb Belth, Xinyi Zheng, et al. WWW ’20] github.com/GemsLab/KGIST



This talk: Summarization Meets Outlier Detection

Summaries
(2) Graph Streams:

[SDM™4, KDD'15,  Persistent and bursty activity detection
Dat Bull Eng’17, [KDD’20]
SNAM’18,

o SDM’19,
Node IDs Timestope KDD’19a, KDD’20...]

Summaries

[ICDM’19,
WebConf’20]




Summarizing Evolving Networks

. summary of frequent graph patterns

* Related topics:
<+ Motif Mining

= [Kovanen+, JSTAT’11], [Paranjape+, WSDM’17], [Liu+, WSDM’19]

<+ Frequent Subgraph Mining

= [Abdelhamid+,TKDE’17], [Aslay+, CIKM’18]

% GEMS e B [Caleb Belth, X. Zheng, D. Koutra. ACM KDD’20] https:/github.com/GemsLab/PENminer 4/
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Summarizing Evolving Networks

4 R
1 1 2 5 /@ 11 /’\\ %\\
o ¥ 3
\8 4/
2 3@3@45 L.
>

Time t

bursty anomaly continual, regular

O 1

4 —Hiit——— 2 3 ||}

I
Occurrences bCCU rrences t
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Summarizing Evolving Networks

Summarize graph stream G, e §
with persistent “activity snippets”. '

——,

3\
@)
=2\
e
TN
-/
P

@
IS
)

/m O
/~
o =
\@u

N
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Activity Snippet

An activity snippet describes a sequence of activity among
connected nodes in a network

@6 ° ®
a1 2 3 1 3 2
2 00 2°0
@ @ @ _ . . Labels
II ' %' 1:.2 ®
2 000@ ~
> .
Timet 5.289® 0, -emwoamir
o @ @ @ @3@ + edge deletions
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Axioms of Persistence

. Persistence should be 0 iff there are O occurrences

Persistence = 0 Persistence > 0

Measurement Interval

Measurement Interval

M ces s

51



Axioms of Persistence

A1l: Persistence should be 0 iff there are O occurrences

AZ: As the interval becomes infinitely filled with unique occurrences,
persistence should tend to infinity

Persistence — o

Measurement Interval

M e e

52



Axioms of Persistence

A1l: Persistence should be 0 iff there are O occurrences

A2: As the interval becomes infinitely filled with unique occurrences,
persistence should tend to infinity

A3: Shifting all occurrences should not affect persistence

Measurement Interval

M e e

53



Axioms of Persistence

A1: Persistence should be O iff there are 0 occurrences

A2: As the interval becomes infinitely filled with unique occurrences,
persistence should tend to infinity

A3: Shifting all occurrences should not affect persistence

A4: Shrinking the interval of measurement leads to higher persistence

| | | | | 1
I N N —~> I T
Measurement Interval _

Persistence

M ces s

54



Properties of Persistence

: For two snippets with n unique, uniformly-spaced occurrences,
persistence is larger for the snippet with occurrences over a wider interval

Occurrence Interval

S Occuronce inional KR <

| | | [ .

| | | . Persistence
Measurement Interval

M e e

55



Properties of Persistence

P1: For two snippets with n unique, uniformly-spaced occurrences,
persistence is larger for the snippet with occurrences over a wider interval

P2: For two snippets with unique, uniformly-spaced occurrences spread out
over the same interval,persistence is larger for the snippet with more

occurrences

I I I I —> Persistence

Persistence

19)



Properties of Persistence

P1: For two snippets with n unique, uniformly-spaced occurrences,
persistence is larger for the snippet with occurrences over a wider interval

P2: For two shippets with unique, uniformly-spaced occurrences spread out
over the same interval,persistence is larger for the snippet with more

occurrences

P3: The persistence of a snippet

: : : | I I I »  Persistence
with n unique occurrences in an

Interval is maximized iff the - <

occurrences are Spread out | | | | | > .
| | | | . Persistence

uniformly

M eems e 57



Measuring Snippets’ Persistence

|[tf, tl]xl +1
|[ts, te]l + 1

+1, [Ix|>1
|rx| € {0,1}

Entropy of distribution

9 frequency of gaps between
occurrences

% GEMS LAB é [Caleb Belth, X. Zheng, D. Koutra. ACM KDD’20)] https:/github.com/GemsLab/PENminer 28
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Measuring Snippets’ Persistence

- Our Solution:
PENmMiner

Offline + Streaming variants

* Measure of persistence can apply to any
data stream.

width

Entropy of distribution
of gaps between
occurrences

% gGEMS LAB % [Caleb Belth, X. Zheng, D. Koutra. ACM KDD’QO] https://github.com/GemsLab/PENminer
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Engaged Discussions & Regular Interactions

(. O o
‘ 11136 back-and-forths in 1 hour

| ii
i ¥ s,
S g L o R e vag
1 1 bee S
I W e

\‘ Regularly answering the same users Qs / l- .
' - T

1
10°
6“23354 2‘u82199 :u1950 ——

=
o
N

Frequency

=
o
—

Persistent
(Commented on @ 72603 US5747
Answer) Subtly Persistent St aCkoverﬂ.OW

(Answered)
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Real-time Anomaly Detection

[Eswaran+, ICDM’18] [Dai+, PVLDB’14]
[Bhatia+, AAAI’20]

Metric FREQ SEDANSPOT MibpAs-R sPENminer

AUC Subtle anomalies like these

F1@100
F1@1K | | | | >
F1@2K | | | |

AUC . .
F1@500K Bursty anomalies like these

F1@1M

Avg AUC

Setup:
- Represent each activity snippet at time t with a 2d point <frequency, persistence>
- Apply a streaming anomaly detection method (e.g., Random Cut Forest or RCF [Guha+, ICML’16])

% GEMS LAB é [Caleb Belth, X. Zheng, D. Koutra. ACM KDD’20] https://github.com/GemsLab/PENminer 61
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Metric

AUC
F1@100
F1@1K
F1@2K

FRrREQ

0.8325+0.02
0.0505+0.01
0.1812+0.00
0.1572+0.01

AUC 0.8450+0.00

[Bhatia+, AAAI’20]

SEDANSPOT

0.4519+0.01
0.0001+0.00
0.0035+0.00
0.0098+0.00

0.6390+0.00

F1@500K 0.3089+0.00%« 0.2745+0.00
Fl@1M  0.5351+0.00% 0.4527+0.00

Mibas-R

0.4520+0.02
0.0000+£0.00
0.0003+0.00
0.0002+0.00

DS

0.7435+0.03
0.0076+0.00
0.0378+0.01
0.0561+0.01

0.9434+0.00*« 0.8632+0.00
0.3019+0.00 0.3063+0.00
0.5274+0.00 0.5295%+0.00

[Dai+, PVLDB’14]

Fl@2M 0.7184+0.00 0.6309+0.00 0.8378+0.00« 0.8066+0.00

Avg AUC

0.8388 (2) 0.5455 (5) 0.6977 (4) 0.8034 (3)

PENminer outperforms all baselines at the

SPENminer

0.9309+0.00x
0.0508+0.01

0.2580+0.03x

0.3292+0.03x

0.8359+0.01
0.2978+0.00
0.5169+0.00
777/ = =805

0.8834 (1)

Real-time Anomaly Detection

[Eswaran+, ICDM’18]

Subtle anomalies like these

I I I I
| | | e
Bursty anomalies like these

—Hitt——Hit——

of finding subtle anomalies,

and performs competitively at finding bursty anomalies
against baselines designed specifically for that task.
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Surprisingly Regular Taxi Trips 7 fes
E _ | 1]
Ee _/ ~
.Elﬂlﬂ.
Mysterious trip every day AL R N\gCtTaxu
nion City / a a
b} 20 D
From Queens Let=Ry
o
To near UN building Lh® &\“’ %
" e Pati mlg
Around midnight i, = = B
12784 =) ] UEENS
For over two months B 7w ¢

€

Forest Park
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Recap: Graph Summarization Meets Outlier Detection

« Summarization can help identify patterns and in the data -

« Rule-based summarization of KGs can help unify multiple refinement =
tasks that are traditionally solved by tailored approaches [WwWWwW’20]

< KGist can identify various types of errors in KGs and
missing information

« Summarization of graph streams with persistent
activity snippets [KDD’20]
< Beyond just frequency; capture how patterns evolve ’
< The relationship of frequency and persistence highlight anomalies “

M e e



Talk based on the following papers

* Y. Liu, T. Safavi, A. Dighe, D. Koutra. Graph Summarization Methods and Applications: A Survey. ACM
Computing Surveys 2018.

« Caleb Belth, Xinyi (Carol) Zheng, Jilles Vreeken, Danai Koutra. \What is normal, What is Strange, and

What is Missing in a Knowledge Graph: Unified Characterization via Inductive Summarization. The Web
Conference (WWW/TWC) '20.

« Caleb Belth, Xinyi (Carol) Zheng, Danai Koutra. Mining Persistent Activity in Continually Evolving
Networks. ACM SIGKDD ’20.
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Thank you! /" :
Questions? 1 L AN
Danai Koutra | e .
dkoutra@umich.edu A\
=3

Caleb Belth

Marlena Duda | | Mark Heimann & Di Jin
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Graph Summarization Meets Outlier Detection
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