Charu C. Aggarwal IBM T J Watson Research Center Yorktown Heights, NY

# Ensemble-Centric Evaluation of Outlier Detection Algorithms

# Introduction

- Evaluation of outlier detection algorithms is notoriously difficult
  - Outlier detection is unsupervised  $\Rightarrow$  No labels at the time of algorithm execution
  - Relative performance of algorithms depends on setting and data distribution  $\Rightarrow$  No guidance from supervision
  - Need a testing approach that is robust to setting and data distribution  $\Rightarrow$  Ensembles

# **Comparability of Different Algorithms**

- Cannot compare algorithms with different hypotheses of what a "normal" class distribution is:
  - The nearest neighbor class behaves very differently from kernel Mahalanobis method
  - Relative performance of different models may vary drastically with data distributions
  - Want to use ensembles to obtain design principles that are robust across data distributions

## **Parameter Setting Dilemma**



- Example from Lymphography Data Set: LOF has better best-case performance but average k-nearest neighbor is stable.
  - Unsupervised nature of the problem makes it challenging to make decisions
  - Analyst has no idea of quality (until after the fact)

# **Other Parameter Setting Dilemmas**

- An algorithm with many parameters can be easily optimized with cross-validation in supervised settings
  - Notoriously hard to optimize in unsupervised settings
  - One class-SVMs: Can perform excellently for some parameter choices and very poorly for others
- Inadvertent benchmarking problem: Contamination from labels via repeated testing favors algorithms with many parameters

# **The Effect of Ensembles**

- Performance of algorithm is sensitive to whether it is wrapped in an ensemble
  - Ordering of base detectors different from ensemble-centric variations
  - Cannot compare an ensemble detector (e.g., isolation forest) easily with a single implementation of k-NN

### Goals of Testing

- Not intended to provide a panacea or single solution
  - Intend to show how complicated the picture really is
  - Some methods like Isolation Forest do really well in our tests
    - \* Seems to do well in common rare class settings
    - \* Can be disastrously bad for pathological cases
- Main takeaway is to emphasize the importance of ensembles

# **Integrate Testing with Design Principles**

- Find which algorithms are robust within a particular family of algorithms (e.g., NN-algorithm or linear model).
  - Not meaningful to compare different distribution assumptions of what the normal class is.
- Identify how one can optimize a particular type of outlier model in parameter independent way (e.g., ensembles) before evaluation
- Find which algorithms are most correlated in terms of performance
  - Useful for creating a heterogeneous detector combining multiple algorithms

Creating an Ensemble-Centric Model from a Single Family

- A useful ensemble method is variable subsampling.
- Create a subsample of size varying between two ranges.
- Apply outlier detection algorithm to each subsample.
- Average outlier scores from different models.
- Comparing unoptimized k-NN against an isolation forest is not fair!
  - Ensembles of 1-NN algorithms perform similar to an isolation forest and even have semantic connections with one another

# **Advantages of Variable Subsampling**

- Variable subsampling can often perform implicit parameter space exploration of some detectors by fixing the parameter values and varying the size of the sampled data set.
  - A k-nearest neighbor detector would automatically use varying percentile values of k over different subsample sizes.
  - Plays the dual role of enabling both diversity and parameter-space exploration.

#### Models Tested

- **Distance- or Density-based:** Average *k*-NN method, Exact *k*-NN method, LOF, Isolation Forest
- **Soft PCA (Mahaanobis):** Distance from centroid after scaling each principal component to unit norm
- Kernel Mahalanobis: Do the above in kernel space
- **Regression-based:** (GASP, ALSO) Predict each feature from remaining features and average RMSE across features

### Hidden Gems

- Many top detectors such as isolation forests are well known.
- Some lesser known detectors seem to work well in ensemble context (Hidden Gems)
  - Linear regression-based detectors (GASP, ALSO)
  - Kernel Mahalanobis method
- Described in subsequent slides.

### **ALSO:** Base Detector

- Decompose an outlier detection problem on *d*-dimensional data into *d* supervised problems.
- These d supervised problems are constructed one by one by selecting each of the d dimensions as the target attribute in turn and using the other (d-1) attributes to predict it.
  - Off-the-shelf classification/regression modeling problem
  - One can use any model such as random forests, leastsquares regression, and kernel regression.
- Combine scores into a single RMSE score

#### **ALSO-E: Ensemble-Centric Variant**

- For each base detector, a value of s is chosen uniformly at random from  $(\min\{n, 50\}, \min\{n, 1000\})$ .
- A sample of size *s* is drawn from the data and a training model is constructed on using an off-the-shelf learner.
- An attribute is randomly sampled from the data as the target attribute and the remaining attributes are used as the predictors.
- The RMSE error is computed for this target attribute on the remaining (n s) out-of-sample points.
- Averaged over multiple samples.

#### **GASP:** Group-wise Approach

- Partitions the d attributes into a set of r target attributes and (d-r) predictor attributes.
- In each iteration, we randomly sample r target attributes and the remaining (d-r) attributes are treated as predictor attributes.
- Use RMSE error to create outlier scores.
- Similar ensemble-centric variants as ALSO

### **Recap of Mahalanobis Method**

- Outlier score is Mahalanobia distance to centroid of data set
- Equivalent algorithm: Transform the data using PCA and normalize along principal component directions
- Distance to centroid is the Mahalanobis distance
- Principal components for transformation  $\Rightarrow$  eigenvectors of covariance matrix
  - Useful alternative: Eigenvectors of similarity matrix directly provides embedding

### **Outliers that Mahalanobis method finds**



• Global extreme values

### Outliers that Mahalanobis method can't find



• Not extreme values

### Kernel Mahalanobis Method

- Compute the similarity matrix of the data set using a kernel
- Find *all* its normalized eigenvectors: Embedding
  - Similarity matrix is efficient to compute in subsampling settings
  - Can be generalized to subsample-based approach.

### **Outliers that Kernel Mahalanobis method finds**



• Merit of space transformation

### Kernel Mahalanobis Method: Generating Full Representation from Subsample

- Find eigenvector matrix P of  $s \times s$  similarity matrix (subsampled)  $S_{in} = P \Sigma^2 P^T$  and eigenvalues in  $\Sigma^2$
- Find *n*×*s* similarity matrix *S* between all points and in-sample points.
- Rows of  $n \times s$  matrix  $F = SP\Sigma^{-1}$  provide unnormalized embedding of all points

**Generating Outlier Scores from Subsample** 

- Standardize F to have zero mean and unit variance.
- The  $L_2$ -norm of each row provides the subsampling-specific outlier score.
- Repeat over many subsamples and average the outlier score.

### **Experimental Results**

- Implemented each of the detectors with variable subsampling
- Show both performance of base detectors and ensembles with box plots.





• Large variation in base detectors but similar performance of ensemble





 Glass is among the few data sets were Isolation Forest does poorly





• Huge variation in base detectors but similar performance of ensemble

#### Wisconsin Breast Cancer



• Huge variation in base detectors but similar performance of ensemble

#### Median Base Performance vs Ensemble Performance



• The great equalizing power of ensembles

### **Some Observations**

- Extreme value detectors like the Mahalanobis method seem to do surprisingly well
  - Data sets derived from high-dimensional classification problems
  - Linear separability of high dimensional data tends to favor detectors biased towards extreme value analysis
  - Detectors that are not specifically focused on finding extreme values but are biased towards it will tend to do very well.

#### Observations

- The differential performance between the Mahalanobis method and kernel Mahalanobis method can be used to infer when outliers are not (multivariate) extreme values
- Kernel Mahalanobis method is able to find both types of outliers

#### **Observations**

- The kernel Mahalanobis method was highly uncorrelated to other detectors and performed very well.
- Isolation Forests and k-NN were somewhat correlated to one another and performed impressively.
- The Isolation Forest provided the best overall results.
  - Occasionally performed poorly on some data sets

#### **TRINITY Ensemble**

- Combine three different subsampled ensembles:
  - Kernel Mahalanobis ensemble
  - Exact k-NN ensemble
  - Isolation Forest with Variable Subsampling
- TRINITY is an ensemble of ensembles

#### The Case of Isolation Forests

- Excellent performance across a range of data sets
- Occasionally performs very poorly (e.g., Glass data set).
- The cut-based approach tends to discriminate against outliers in the interior of the data.
- Could this excellent detector have hidden weaknesses?

### **A** Pathological Data Set for Isolation Forests

- Generate normal data on the surface of a spherical ball
- Place a single outlier at the center of the ball
- Referred to as *ball-and-speck data set*.
- An isolation forest tends to do surprisingly poorly with increasing dimensionality on the ball-and-speck data set

#### **A** Pathological Case for Isolation Forests



• Effect of increasing dimensionality

### What Can be Achieved with Ensembles

- Reducing effects of variance for a single detector type
- Protecting against disastrous performance of a particular detector because of quirks of data set

#### What Cannot be Achieved

- Consistently performing better than all detectors in a heterogeneous combination
- Tailoring detector selection and importance to specific types of data sets

#### **Overview and Future Directions**

- Real data sets have inbuilt disadvantages
- What about synthetic data?
  - Danger that algorithm can be tailored to data
  - Variational models can be used to encode outliers modeled on real data