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Introduction

• Evaluation of outlier detection algorithms is notoriously dif-

ficult

– Outlier detection is unsupervised ⇒ No labels at the time

of algorithm execution

– Relative performance of algorithms depends on setting

and data distribution ⇒ No guidance from supervision

– Need a testing approach that is robust to setting and data

distribution ⇒ Ensembles



Comparability of Different Algorithms

• Cannot compare algorithms with different hypotheses of

what a “normal” class distribution is:

– The nearest neighbor class behaves very differently from

kernel Mahalanobis method

– Relative performance of different models may vary drasti-

cally with data distributions

– Want to use ensembles to obtain design principles that

are robust across data distributions



Parameter Setting Dilemma
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• Example from Lymphography Data Set: LOF has better
best-case performance but average k-nearest neighbor is sta-
ble.

– Unsupervised nature of the problem makes it challenging
to make decisions

– Analyst has no idea of quality (until after the fact)



Other Parameter Setting Dilemmas

• An algorithm with many parameters can be easily optimized

with cross-validation in supervised settings

– Notoriously hard to optimize in unsupervised settings

– One class-SVMs: Can perform excellently for some pa-

rameter choices and very poorly for others

• Inadvertent benchmarking problem: Contamination from

labels via repeated testing favors algorithms with many pa-

rameters



The Effect of Ensembles

• Performance of algorithm is sensitive to whether it is wrapped

in an ensemble

– Ordering of base detectors different from ensemble-centric

variations

– Cannot compare an ensemble detector (e.g., isolation for-

est) easily with a single implementation of k-NN



Goals of Testing

• Not intended to provide a panacea or single solution

– Intend to show how complicated the picture really is

– Some methods like Isolation Forest do really well in our

tests

∗ Seems to do well in common rare class settings

∗ Can be disastrously bad for pathological cases

• Main takeaway is to emphasize the importance of ensembles



Integrate Testing with Design Principles

• Find which algorithms are robust within a particular family

of algorithms (e.g., NN-algorithm or linear model).

– Not meaningful to compare different distribution assump-

tions of what the normal class is.

• Identify how one can optimize a particular type of outlier

model in parameter independent way (e.g., ensembles) before

evaluation

• Find which algorithms are most correlated in terms of per-

formance

– Useful for creating a heterogeneous detector combining

multiple algorithms



Creating an Ensemble-Centric Model from a Single Family

• A useful ensemble method is variable subsampling.

• Create a subsample of size varying between two ranges.

• Apply outlier detection algorithm to each subsample.

• Average outlier scores from different models.

• Comparing unoptimized k-NN against an isolation forest is

not fair!

– Ensembles of 1-NN algorithms perform similar to an isola-

tion forest and even have semantic connections with one

another



Advantages of Variable Subsampling

• Variable subsampling can often perform implicit parameter

space exploration of some detectors by fixing the parameter

values and varying the size of the sampled data set.

– A k-nearest neighbor detector would automatically use

varying percentile values of k over different subsample

sizes.

– Plays the dual role of enabling both diversity and

parameter-space exploration.



Models Tested

• Distance- or Density-based: Average k-NN method, Exact

k-NN method, LOF, Isolation Forest

• Soft PCA (Mahaanobis): Distance from centroid after

scaling each principal component to unit norm

• Kernel Mahalanobis: Do the above in kernel space

• Regression-based: (GASP, ALSO)– Predict each feature

from remaining features and average RMSE across features



Hidden Gems

• Many top detectors such as isolation forests are well known.

• Some lesser known detectors seem to work well in ensemble

context (Hidden Gems)

– Linear regression-based detectors (GASP, ALSO)

– Kernel Mahalanobis method

• Described in subsequent slides.



ALSO: Base Detector

• Decompose an outlier detection problem on d-dimensional

data into d supervised problems.

• These d supervised problems are constructed one by one by

selecting each of the d dimensions as the target attribute in

turn and using the other (d− 1) attributes to predict it.

– Off-the-shelf classification/regression modeling problem

– One can use any model such as random forests, least-

squares regression, and kernel regression.

• Combine scores into a single RMSE score



ALSO-E: Ensemble-Centric Variant

• For each base detector, a value of s is chosen uniformly at
random from (min{n,50},min{n,1000}).

• A sample of size s is drawn from the data and a training
model is constructed on using an off-the-shelf learner.

• An attribute is randomly sampled from the data as the tar-
get attribute and the remaining attributes are used as the
predictors.

• The RMSE error is computed for this target attribute on the
remaining (n− s) out-of-sample points.

• Averaged over multiple samples.



GASP: Group-wise Approach

• Partitions the d attributes into a set of r target attributes

and (d− r) predictor attributes.

• In each iteration, we randomly sample r target attributes

and the remaining (d− r) attributes are treated as predictor

attributes.

• Use RMSE error to create outlier scores.

• Similar ensemble-centric variants as ALSO



Recap of Mahalanobis Method

• Outlier score is Mahalanobia distance to centroid of data set

• Equivalent algorithm: Transform the data using PCA and

normalize along principal component directions

• Distance to centroid is the Mahalanobis distance

• Principal components for transformation ⇒ eigenvectors of

covariance matrix

– Useful alternative: Eigenvectors of similarity matrix di-

rectly provides embedding



Outliers that Mahalanobis method finds
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• Global extreme values



Outliers that Mahalanobis method can’t find
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• Not extreme values



Kernel Mahalanobis Method

• Compute the similarity matrix of the data set using a kernel

• Find all its normalized eigenvectors: Embedding

– Similarity matrix is efficient to compute in subsampling

settings

– Can be generalized to subsample-based approach.



Outliers that Kernel Mahalanobis method finds
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• Merit of space transformation



Kernel Mahalanobis Method: Generating Full

Representation from Subsample

• Find eigenvector matrix P of s× s similarity matrix (subsam-

pled) Sin = PΣ2PT and eigenvalues in Σ2

• Find n×s similarity matrix S between all points and in-sample

points.

• Rows of n× s matrix F = SPΣ−1 provide unnormalized em-

bedding of all points



Generating Outlier Scores from Subsample

• Standardize F to have zero mean and unit variance.

• The L2-norm of each row provides the subsampling-specific

outlier score.

• Repeat over many subsamples and average the outlier score.



Experimental Results

• Implemented each of the detectors with variable subsampling

• Show both performance of base detectors and ensembles with

box plots.



Lymphography
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• Large variation in base detectors but similar performance of

ensemble



Glass

0.0

0.2

0.4

0.6

0.8

1.0

KNN AKNN LOF MAH−L MAH−N ALSO−E GASP−E IF−VS

R
O

C
 A

U
C

TRINITY

• Glass is among the few data sets were Isolation Forest does

poorly



Ecoli
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• Huge variation in base detectors but similar performance of

ensemble



Wisconsin Breast Cancer
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• Huge variation in base detectors but similar performance of

ensemble



Median Base Performance vs Ensemble Performance
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• The great equalizing power of ensembles



Some Observations

• Extreme value detectors like the Mahalanobis method seem

to do surprisingly well

– Data sets derived from high-dimensional classification

problems

– Linear separability of high dimensional data tends to favor

detectors biased towards extreme value analysis

– Detectors that are not specifically focused on finding ex-

treme values but are biased towards it will tend to do very

well.



Observations

• The differential performance between the Mahalanobis

method and kernel Mahalanobis method can be used to infer

when outliers are not (multivariate) extreme values

• Kernel Mahalanobis method is able to find both types of

outliers



Observations

• The kernel Mahalanobis method was highly uncorrelated to

other detectors and performed very well.

• Isolation Forests and k-NN were somewhat correlated to one

another and performed impressively.

• The Isolation Forest provided the best overall results.

– Occasionally performed poorly on some data sets



TRINITY Ensemble

• Combine three different subsampled ensembles:

– Kernel Mahalanobis ensemble

– Exact k-NN ensemble

– Isolation Forest with Variable Subsampling

• TRINITY is an ensemble of ensembles



The Case of Isolation Forests

• Excellent performance across a range of data sets

• Occasionally performs very poorly (e.g., Glass data set).

• The cut-based approach tends to discriminate against out-

liers in the interior of the data.

• Could this excellent detector have hidden weaknesses?



A Pathological Data Set for Isolation Forests

• Generate normal data on the surface of a spherical ball

• Place a single outlier at the center of the ball

• Referred to as ball-and-speck data set.

• An isolation forest tends to do surprisingly poorly with in-

creasing dimensionality on the ball-and-speck data set



A Pathological Case for Isolation Forests
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• Effect of increasing dimensionality



What Can be Achieved with Ensembles

• Reducing effects of variance for a single detector type

• Protecting against disastrous performance of a particular de-

tector because of quirks of data set



What Cannot be Achieved

• Consistently performing better than all detectors in a hetero-

geneous combination

• Tailoring detector selection and importance to specific types

of data sets



Overview and Future Directions

• Real data sets have inbuilt disadvantages

• What about synthetic data?

– Danger that algorithm can be tailored to data

– Variational models can be used to encode outliers modeled

on real data


