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Detection Algorithms



e Evaluation of outlier detection algorithms is notoriously dif-
ficult

— Qutlier detection is unsupervised = No labels at the time
of algorithm execution

— Relative performance of algorithms depends on setting
and data distribution = NoO guidance from supervision

— Need a testing approach that is robust to setting and data
distribution = Ensembles



Comparability of Different Algorithms

e Cannot compare algorithms with different hypotheses of
what a “normal” class distribution is:

— The nearest neighbor class behaves very differently from
kernel Mahalanobis method

— Relative performance of different models may vary drasti-
cally with data distributions

— Want to use ensembles to obtain design principles that
are robust across data distributions



Parameter Setting Dilemma

1_00_....5 .................................... .................................... ....................................
O 0.05 | e
2
O 0.90 i e
O |
@ 085 il B REEUUUEEEERE TR 11" ML s

0.80 i + an_kNN - LOF ..............................

0 50 100 150

Kk

e Example from Lymphography Data Set: LOF has better
best-case performance but average k-nearest neighbor is sta-
ble.

— Unsupervised nature of the problem makes it challenging
to make decisions

— Analyst has no idea of quality (until after the fact)



Other Parameter Setting Dilemmas
e An algorithm with many parameters can be easily optimized
with cross-validation in supervised settings
— Notoriously hard to optimize in unsupervised settings
— One class-SVMs: Can perform excellently for some pa-

rameter choices and very poorly for others

e Inadvertent benchmarking problem: Contamination from
labels via repeated testing favors algorithms with many pa-
rameters



T he Effect of Ensembles

e Performance of algorithm is sensitive to whether it is wrapped
in an ensemble

— Ordering of base detectors different from ensemble-centric
variations

— Cannot compare an ensemble detector (e.g., isolation for-
est) easily with a single implementation of k-NN



e Not intended to provide a panacea or single solution
— Intend to show how complicated the picture really is

— Some methods like Isolation Forest do really well in our
tests

x Seems to do well in common rare class settings

x Can be disastrously bad for pathological cases

e Main takeaway is to emphasize the importance of ensembles



Integrate Testing with Design Principles

e Find which algorithms are robust within a particular family
of algorithms (e.g., NN-algorithm or linear model).

— Not meaningful to compare different distribution assump-
tions of what the normal class is.

e Identify how one can optimize a particular type of outlier
model in parameter independent way (e.g., ensembles) before
evaluation

e Find which algorithms are most correlated in terms of per-
formance

— Useful for creating a heterogeneous detector combining
multiple algorithms



A useful ensemble method is variable subsampling.

Create a subsample of size varying between two ranges.

Apply outlier detection algorithm to each subsample.

Average outlier scores from different models.

Comparing unoptimized k-NN against an isolation forest is
not fair!

— Ensembles of 1-NN algorithms perform similar to an isola-
tion forest and even have semantic connections with one
another



Advantages of Variable Subsampling

e Variable subsampling can often perform implicit parameter
space exploration of some detectors by fixing the parameter
values and varying the size of the sampled data set.

— A k-nearest neighbor detector would automatically use
varying percentile values of k over different subsample
Sizes.

— Plays the dual role of enabling both diversity and
parameter-space exploration.



Distance- or Density-based: Average k-NN method, Exact
k-NN method, LOF, Isolation Forest

Soft PCA (Mahaanobis): Distance from centroid after
scaling each principal component to unit norm

Kernel Mahalanobis: Do the above in kernel space

Regression-based: (GASP, ALSO)— Predict each feature
from remaining features and average RMSE across features



e Many top detectors such as isolation forests are well known.

e Some lesser known detectors seem to work well in ensemble
context (Hidden Gems)

— Linear regression-based detectors (GASP, ALSO)

— Kernel Mahalanobis method

e Described in subsequent slides.



e Decompose an outlier detection problem on d-dimensional
data into d supervised problems.

e [ hese d supervised problems are constructed one by one by
selecting each of the d dimensions as the target attribute in
turn and using the other (d — 1) attributes to predict it.

— Off-the-shelf classification/regression modeling problem
— One can use any model such as random forests, least-

squares regression, and kernel regression.

e Combine scores into a single RMSE score



For each base detector, a value of s is chosen uniformly at
random from (min{n,50}, min{n,1000}).

A sample of size s is drawn from the data and a training
model is constructed on using an off-the-shelf learner.

An attribute is randomly sampled from the data as the tar-
get attribute and the remaining attributes are used as the
predictors.

The RMSE error is computed for this target attribute on the
remaining (n — s) out-of-sample points.

Averaged over multiple samples.



Partitions the d attributes into a set of r target attributes
and (d — r) predictor attributes.

In each iteration, we randomly sample r target attributes
and the remaining (d — r) attributes are treated as predictor
attributes.

Use RMSE error to create outlier scores.

Similar ensemble-centric variants as ALSO



Qutlier score is Mahalanobia distance to centroid of data set

Equivalent algorithm: Transform the data using PCA and
normalize along principal component directions

Distance to centroid is the Mahalanobis distance

Principal components for transformation = eigenvectors of
covariance matrix

— Useful alternative: Eigenvectors of similarity matrix di-
rectly provides embedding



Outliers that Mahalanobis method
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Outliers that Mahalanobis method can’t find
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e Compute the similarity matrix of the data set using a kernel

e Find all its normalized eigenvectors: Embedding

— Similarity matrix is efficient to compute in subsampling
settings

— Can be generalized to subsample-based approach.



Outliers that Kernel Mahalanobis method finds
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e Merit of space transformation



Kernel Mahalanobis Method: Generating Full
Representation from Subsample

e Find eigenvector matrix P of s x s similarity matrix (subsam-
pled) S;,, = PX2P! and eigenvalues in X2

e Find n xs similarity matrix S between all points and in-sample
points.

e Rows of n x s matrix F = SP>~1 provide unnormalized em-
bedding of all points



Generating Outlier Scores from Subsample

e Standardize F' to have zero mean and unit variance.

e The Ly-norm of each row provides the subsampling-specific
outlier score.

e Repeat over many subsamples and average the outlier score.



e Implemented each of the detectors with variable subsampling

e Show both performance of base detectors and ensembles with
box plots.
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e Large variation in base detectors but similar performance of
ensemble
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e (Glass is among the few data sets were Isolation Forest does
poorly
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e Huge variation in base detectors but similar performance of
ensemble
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e Huge variation in base detectors but similar performance of
ensemble



Median Base Performance vs Ensemble Performance
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e [ he great equalizing power of ensembles



e Extreme value detectors like the Mahalanobis method seem
to do surprisingly well

— Data sets derived from high-dimensional classification
problems

— Linear separability of high dimensional data tends to favor
detectors biased towards extreme value analysis

— Detectors that are not specifically focused on finding ex-
treme values but are biased towards it will tend to do very
well.



e [ he differential performance between the Mahalanobis
method and kernel Mahalanobis method can be used to infer
when outliers are not (multivariate) extreme values

e Kernel Mahalanobis method is able to find both types of
outliers



e [ he kernel Mahalanobis method was highly uncorrelated to
other detectors and performed very well.

e Isolation Forests and k-NN were somewhat correlated to one
another and performed impressively.

e [ he Isolation Forest provided the best overall results.

— Occasionally performed poorly on some data sets



e Combine three different subsampled ensembles:
— Kernel Mahalanobis ensemble
— Exact k-NN ensemble

— Isolation Forest with Variable Subsampling

e TRINITY is an ensemble of ensembles



Excellent performance across a range of data sets

Occasionally performs very poorly (e.g., Glass data set).

The cut-based approach tends to discriminate against out-
liers in the interior of the data.

Could this excellent detector have hidden weaknesses?



Generate normal data on the surface of a spherical ball

Place a single outlier at the center of the ball

Referred to as ball-and-speck data set.

An isolation forest tends to do surprisingly poorly with in-
creasing dimensionality on the ball-and-speck data set



A Pathological Case for Isolation Forests
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e Effect of increasing dimensionality



What Can be Achieved with Ensembles

e Reducing effects of variance for a single detector type

e Protecting against disastrous performance of a particular de-
tector because of quirks of data set



e Consistently performing better than all detectors in a hetero-
geneous combination

e [ailoring detector selection and importance to specific types
of data sets



e Real data sets have inbuilt disadvantages

e \What about synthetic data?
— Danger that algorithm can be tailored to data

— Variational models can be used to encode outliers modeled
on real data



