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ABSTRACT
Real world networks often evolve in complexways over time. Under-
standing anomalies in dynamic networks is crucial for applications
such as traffic accident detection, intrusion identification and de-
tection of ecosystem disturbances. In this work, we focus on the
problem of change point detection in dynamic graphs. The goal is to
identify time steps where the graph structure deviates significantly
from the norm. Despite empirical success of recent methods, build-
ing a change point detection method for real world dynamic graphs,
which often scale to millions of nodes, remains an open question.
To fill this gap, we propose LADdos, a scalable method for change
point detection in dynamic graphs. LADdos brings together ideas
from two recent works: an accurate change point detection method
for graphs called LAD [10] which detects the changes in the full
Laplacian spectrum of the graph in each timestamp, and the general
framework of network density of states (DOS) [5] which models the
distribution of the singular values through efficient approximation
methods. In experiments with two common graph models –the
Stochastic Block Model (SBM) and the Barabási-Albert (BA) model
– we show that LADdos has equal performance to LAD, which is
the current state-of-the-art, while being orders of magnitude faster.
For instance, on a dynamic graph with total 21 million edges over
150 timestamps, LADdos achieves 100x speedup when compared
to LAD.

CCS CONCEPTS
• Computing methodologies → Spectral methods; Temporal rea-
soning.
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1 INTRODUCTION
Dynamic graphs have emerged as a principled way to model com-
plex real world relations that evolves over time. Anomaly Detection
in dynamic graphs has attracted attention due to its broad appli-
cation in social media misinformation identification [20], fraud
information detection and abnormal clinical information identifica-
tion [4]. In essence, anomaly detection in dynamic graph aims to
pinpoint different types of time-varying anomalies which signifi-
cantly deviate from the "normal" behavior.

In this work, we focus on detecting change points which identi-
fies time steps where the graph structure or component deviates
significantly from the normal behavior. We also consider the closely
related anomaly type known as events [11]. Following the definition
from [10], a change point is a time point where there is a significant
adjustment in the graph generation process and these changes per-
sists from this point onward. In contrast, an event is a time point
where there is a sudden change in the overall network behavior
and the structure returns to normal afterwards. Similar to [10], our
proposed method is designed to identify both change points and
events based on the Laplacian spectrum of the graph in different
timestamps.

Many real world dynamic graphs contain thousands or millions
of nodes per snapshot. At this scale, computing Singular Value
Decomposition (SVD) to get the Laplacian spectrum as required in
LAD could become computationally expensive or even infeasible.
To address this challenge, we propose LADdos which uses the distri-
bution of the eigenvalues instead of the the actual sequence and inte-
grates the general framework of network density of states (DOS) [5]
to model the distribution of the singular values through efficient ap-
proximation methods. Figure 1 shows how the DOS of a Stochastic
Block Model (SBM) evolves when ten equal sized communities are
merged into two. In both the SBM and Barabási-Albert (BA) model,
we observe drastic changes in the DOS when the generative model
parameter change, which motivates the use of DOS for change
point detection.
Summary of contributions:

• Wepropose a scalable extension of the state-of-the-artmethod
LAD, named LADdos, which uses the distribution of eigen-
values instead of the full Laplacian spectrum and utilizes the
general framework of density of states to efficiently model
the distribution of singular values of the graph Laplacian
matrix.

• We show that LADdos is capable of operating on large graphs
with 100x speed up when compared to LAD and achieve
equally strong performance with very little computational
cost. LADdos is also able to operate on dynamic graphs with
sizes that are infeasible for LAD.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Figure 1: Changes in the density of states of the graph Lapla-
cian reflects changes in the structure of the SBM model.
This example plot shows the change when going from 10
equal sized communities (left) to 2 equal sized communi-
ties (right). Most notably, as the number of communities de-
creases, the intervals with high frequency of singular values
𝜆 changes from [0,1] to [0.25,1].

• We observe that the distribution of singular values on the
graph Laplacian changes closely to the adjustment in the
underlying generative model such as the SBM and the BA
model. LADdos is able to captures these changes as effective
as LAD for change point detection.

2 RELATEDWORK
Anomalies in dynamic graphs can be broadly classified based on
their role in the graph: anomalous nodes [21], edges [2, 22], sub-
graphs [6, 14, 18] and graphs [10, 11, 19]. There are also five cate-
gories of anomaly detection methods based on the survey by Ran-
shous et al. [16]: community based, compression based, decomposi-
tion based, distance based and probabilistic model based methods.
The common strategy across all these methods is to extract a low
dimensional representation from graph snapshots and then apply
an anomaly scoring function to compare these representations.

2.1 Event Detection
Idé and Kashima [11] aim to find time points where the majority of
the edge attributes in the network show significant deviation from
the recent ones. The principal eigenvector corresponding to the
maximum eigenvalue of the positive weighted adjacency matrix
𝑊 is used as a low dimensional representation of the graph (called
activity vector). Different from Idé and Kashima, we use the den-
sity of states of the graph Laplacian matrix to summarize graph
structures and motifs. Koutra et al. [12] first formulate dynamic
graphs as high order tensors and propose to use the PARAFAC
decomposition [3, 7] to obtain vector representations for anomaly
scoring.

2.2 Change Point Detection
Koutra et al. [13] proposed DeltaCon as a novel graph similar-
ity function for anomalous graph snapshot detection. DeltaCon
first computes pairwise node affinities in the first graph and then
measures the difference in node affinity score of the two graphs.
Therefore, DeltaCon is analogous to an anomaly scoring function.
However, it is not straightforward how to extend DeltaCon to tem-
poral reasoning for a sequence of graphs, as it is designed to operate
between pairs of graphs.

Peel and Clauset [15] described the change point detection prob-
lem as identifying the times at which the large-scale patterns of
interaction change fundamentally. Their proposed LetoChange
method relies on an appropriate choice of a parametric family of
probability distribution which describes the data. After which a
Bayesian hypothesis test is used to accept or reject if a parameter
change has occurred in the model.

Wang et al. [19] model network evolution as a first order Markov
process thus designed their EdgeMonitoring method based on
MCMC sampling theory. They assume some unknown underlying
model that governs the generative process. Each graph snapshot
is also assumed to be dependent on the current generative model
as well as the previously observed snapshot (through resampling a
portion of the edges at each step).

Recently, Huang et al. [10] proposed LAD which has two major
differences with prior methods. First, LAD uses the singular values
of the Laplacian matrix of each snapshot as the signature vector
which closely relates to many structural properties in the graph and
spectral graph theory. Second, LAD designs two sliding windows
to model both the short term and long term temporal changes
therefore it is able to detect both events (sudden changes) and
change points (gradual changes). Building upon this work, in our
proposed LADdos, first we use the distribution of the eigenvalues
of the normalized Laplacian matrix as the signature vector instead
of their actual values and achieve a similar performance as LAD.
Second we compute these signature vectors using the recently
proposed network density of states [5] which allows the LADdos
to scale to graphs with millions of nodes.

2.3 Network Density of States
Dong et al. [5] demonstrate the importance to model the overall
distribution of eigenvalues, the spectral density or density of states
(DOS), for common graph matrices such as the adjacency or the
Laplacian matrix. They borrowed tools from condensed matter
physics and added adaptation such as motif filtering to design an
efficient approximation method for DOS in large scale real world
networks. Through compelling visual fingerprints of graphs, Dong
et al. showed that DOS facilitates the computation of many common
centrality measures.

A recent work by Huang et al. [9] proposed a novel graph kernel
which combines local and global density of states of the normalized
adjacency matrix. They revealed that the global DOS captures the
probability that a fixed length random walk returns to a random
node in the graph. The local DOS then measures the probability
that such random walk returns to a fixed node. By utilizing both
global and local DOS, their proposed graph kernal is able to achieve
strong performance on graph classification benchmarks. In this
work, we consider the global DOS for the normalized Laplacian
matrix which captures global structural information of a graph
snapshot thus highly suitable for change point detection.

3 PROBLEM DEFINITION
3.1 Dynamic Graph
Let the interval of interest be from timestamp 1 to𝑇 . A correspond-
ing set of graph snapshots G is written as {G𝑡 }𝑇𝑡=1, where each
G𝑡 = (V𝑡 , E𝑡 ) represents the static graph at timestamp t. V𝑡 and
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E𝑡 are the set of nodes and edges respectively. Define an edge
𝑒 = (𝑖, 𝑗,𝑤) ∈ E𝑡 as the connection between node 𝑖 and node 𝑗 at
timestamp 𝑡 in the dynamic graph with weight𝑤 . By convention,
𝑤 = 1 for all edges in unweighted graphs and𝑤 ∈ R+ for weighted
graphs. We use an adjacency matrix A𝑡 ∈ R𝑛×𝑛 to represent edges
in E𝑡 where 𝑛 = |V𝑡 |. It is often assumed that the number of nodes
in the graph is constant for all time steps [11, 12, 21, 22]. Note that
our proposed LADdos examines properties of each snapshot from
a global view thus adding or removing a small number of nodes
won’t affect the performance of LADdos.

3.2 Change Point Detection
Based on the above formulation, the goal is to find anomalous
graphs G𝑡 in G. Given an anomaly scoring function 𝑓 : G𝑡 →
R, find time steps t such that |𝑓 (G𝑡 ) − 𝑓 (G𝑁 ) | > 𝛿 or |𝑓 (G𝑡 ) −
𝑓 (G𝑊 ) | > 𝜖 where G𝑁 is the normal behavior of the graph in the
global context, G𝑊 is the short term behavior of the graph in recent
context window𝑊 and 𝛿, 𝜖 are thresholds. In general, the anomaly
scoring function should clearly differentiate anomalous points from
normal ones and assign higher anomaly scores to more anomalous
points.

4 LAPLACIAN ANOMALY DETECTION
In this section, a brief overview of the LAD method is provided as
background, more details can be found in [10]. The core idea of
LAD is to detect high level graph changes from low dimensional em-
beddings (called signature vectors). Then the "typical" or "normal"
behavior of the graph can be extracted from a stream of signature
vectors based on both short term and long term dependencies. In
this way, one can compare the deviation of current signature vector
from the normal behavior.

4.1 Laplacian Spectrum
In LAD, the Laplacian spectrum is used as the signature vector sum-
marizing each graph snapshot into a low dimensional embedding.
The (unnormalized) Laplacian matrix L𝑡 is defined as L𝑡 = D𝑡 − A𝑡

where D𝑡 is the diagonal degree matrix and A𝑡 is the adjacency
matrix of G𝑡 . In addition, we define the symmetric normalized
Laplacian L𝑠𝑦𝑚 as,

L𝑠𝑦𝑚 = D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2 (1)

In this work, the symmetric normalized Laplacian L𝑠𝑦𝑚 is used for
both LAD and LADdos. We find this results in better performance
compared to the unnormalized version originally used in LAD. In
this way, the Laplacian matrix is normalized by node degree while
also being symmetric.

Characterize the Normal Behavior LAD computes a "typical"
or "normal" behavior vector from the previous𝑤 signature vectors
where𝑤 is the sliding window size. First, L2 normalization is per-
formed on the aggregated Laplacian spectrum seen so far Σ0, . . . ,Σ𝑡

to obtain unit vectors. Next, a context matrix C is constructed:

C =
©«

| | |
Σ𝑡−𝑤−1 Σ𝑡−𝑤−2 . . . Σ𝑡−1

| | |

ª®¬ ∈ R𝑘×𝑤 (2)

Algorithm 1: LADdos
Input: dynamic graph G
Hyper-parameter : sliding window sizes𝑤𝑠 ,𝑤𝑙 , 𝑁𝑧 probe

vectors, 𝑁𝑚 Chebyshev moments
Output: Final anomaly scores 𝑍 ∗

1 foreach graph snapshot G𝑡 ∈ G do
2 Compute L𝑠𝑦𝑚 (see Eq. (1));
3 Compute the DOS approximation of L𝑠𝑦𝑚 using 𝑁𝑧

probing vectors and 𝑁𝑚 Chebyshev moments;
4 Obtain the frequency vector 𝜎𝑡 for each singular value

interval from DOS ;
5 Perform L2 normalization on 𝜎𝑡 ;
6 Compute left singular vector ˜𝜎𝑤𝑠

𝑡 of context
C𝑤𝑠

𝑡 ∈ R𝑘×𝑤𝑠 (see Eq. (2));
7 Compute left singular vector ˜𝜎𝑤𝑙

𝑡 of context
C𝑤𝑙

𝑡 ∈ R𝑘×𝑤𝑙 (see Eq. (2));
8 𝑍

𝑤𝑠

𝑡 = 1 − 𝜎⊤𝑡 �̃�
𝑤𝑠

𝑡 ;
9 𝑍

𝑤𝑙

𝑡 = 1 − 𝜎⊤𝑡 �̃�
𝑤𝑙

𝑡 ;
10 end
11 foreach time step 𝑡 do
12 𝑍 ∗

𝑠,𝑡 =𝑚𝑎𝑥 (𝑍𝑤𝑠 ,𝑡 − 𝑍𝑤𝑠 ,𝑡−1, 0);
13 𝑍 ∗

𝑙,𝑡
=𝑚𝑎𝑥 (𝑍𝑤𝑙 ,𝑡 − 𝑍𝑤𝑙 ,𝑡−1, 0);

14 𝑍 ∗
𝑡 =𝑚𝑎𝑥 (𝑍 ∗

𝑤𝑠 ,𝑡
, 𝑍 ∗

𝑤𝑙 ,𝑡
);

15 end
16 Return 𝑍 ∗;

where 𝑘 is length of the signature vector. The left singular vector
of C is computed to obtain the normal behavior vector Σ̃𝑤𝑡 . Then,
a short term sliding window of size 𝑤𝑠 and a long term sliding
window of size𝑤𝑙 are used to detect both events and change points.

Infer the Anomaly Score The anomaly score is denoted by 𝑍 .
Let Σ̃𝑤𝑡 be the normal behavior vector and Σ𝑡 be the normalized
Laplacian spectrum at current step. The 𝑍 score is computed as:

𝑍 = 1 −
Σ⊤
𝑡 Σ̃

𝑤
𝑡

∥Σ𝑡 ∥2∥Σ̃𝑤𝑡 ∥2
= 1 − Σ⊤

𝑡 Σ̃
𝑤
𝑡 = 1 − cos𝜃, (3)

where cos𝜃 is the cosine similarity between vectors Σ𝑡 and Σ̃𝑤𝑡 .
Essentially, the 𝑍 scores becomes closer to 1 when the current spec-
trum is very dissimilar to the normal, thus having a high likelihood
of being an anomaly. The 𝑍 scores from different sliding windows
are then aggregated by the max operation. Lastly, the jumps in
anomaly score are emphasized by using 𝑍 ∗

𝑡 = 𝑚𝑖𝑛(𝑍𝑡 − 𝑍𝑡−1, 0).
The points with the largest 𝑍 ∗ are then selected as anomalies.

5 LADWITH DENSITY OF STATES
To scale LAD to real world graphs with millions of nodes, we pro-
pose LAD with Density of States (LADdos) which uses the density
of states of the normalized Laplacian matrix as the signature vector
instead of the whole Laplacian spectrum in LAD. When applied on
large graphs, LADdos is 1). fast to compute even for graph sizes
infeasible with SVD and 2). obtains a fixed dimension signature
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vector independent of the graph size. The procedures in LADdos is
detailed in Algorithm 1.

5.1 Density of States
Let H ∈ R𝑁×𝑁 be any symmetric graph matrix with eigendecom-
position H = QΛQ𝑇 where Λ = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑁 ) and Q is an or-
thogonal matrix. The density of states or spectral density induced
by H is defined as:

𝜇 (𝜆) = 1
𝑁

𝑁∑
𝑖=1

𝛿 (𝜆 − 𝜆𝑖 ) (4)

where 𝛿 is the Kronecker delta. In this work, we focus on the DOS
of the normalized Laplacian matrix L𝑠𝑦𝑚 (see Equation 1). Note that
in directed and asymmetric networks, the eigenvalues in Equation 4
can be extended to singular values and our discussion is centered
around the more general singular values.

When examining a dynamic graph with millions of nodes, it is
natural to model the distribution of singular values rather than
individual values. We propose to leverage the Kernel Polynomial
Method (KPM) described in [5] to approximate the DOS through
an expansion in the dual basis of the Chebyshev basis {𝑇𝑚}. First,
as required by Chebyshev approximation, the spectrum needs to
be rescaled to the interval [−1, 1] for numerical stability. This is
achieved as follows:

L̃ =
2L − (𝜆𝑚𝑎𝑥 (L) + 𝜆𝑚𝑖𝑛 (L))

𝜆𝑚𝑎𝑥 (L) − 𝜆𝑚𝑖𝑛 (L)
(5)

Next, let 𝑇𝑚 (L) be the𝑚th Chebyshev polynomial of the Laplacian
L and 𝑇 ∗

𝑚 (𝑥) = 𝑤 (𝑥)𝑇𝑚 (𝑥). Then the DOS 𝜇 (𝜆) can be expressed
as:

𝜇 (𝜆) =
∞∑

𝑚=0
𝑑𝑚𝑇

∗
𝑚 (𝜆) (6)

𝑑𝑚 =

∫ 1

−1
𝑇𝑚 (𝜆)𝜇 (𝜆)𝑑𝜆 =

1
𝑁

𝑁∑
𝑖=1

𝑇𝑚 (𝜆𝑖 ) =
1
𝑁
𝑡𝑟𝑎𝑐𝑒 (𝑇𝑚 (L)) (7)

In practice, we calculate a finite number of Chebyshev moments for
the approximation. Now we want to efficiently extract the diagonal
elements of the matrices {𝑇𝑚 (𝐿)} without explicitly forming the
matrix. To achieve that, stochastic trace estimation can be used
which utilizes 𝑁𝑧 random probe vectors and estimates the trace:

𝑡𝑟𝑎𝑐𝑒 (L) = E[z𝑇 Lz] ≃ 1
𝑁𝑧

𝑁𝑧∑
𝑗=1

z𝑇𝑗 Lz (8)

5.2 Computational Complexity
Overall, the computational cost of estimating theDOS is𝑂 ( |𝐸 |𝑁𝑧𝑁𝑚)
where |𝐸 | is the number of edges in a graph snapshot, 𝑁𝑧 is the
number of probe vectors and 𝑁𝑚 is the number of chebychev mo-
ments used for the approximation. Thus, LADdos has complexity
𝑂 (𝑇 |𝐸 |𝑁𝑧𝑁𝑚) for dynamic graphs with𝑇 steps. In comparison, the
most expensive step in LAD is the computation of the singular val-
ues of the graph Laplacian matrix. The computational complexity
for full SVD is O(𝑚2𝑛), for a matrix M ∈ R𝑚×𝑛 where𝑚 ≤ 𝑛. Thus
the computational cost for LAD could be as high as O(𝑇𝑚2𝑛).

Events & Change Points SBM Model parameters
Time Point Type 𝑁𝑐 𝑝𝑖𝑛 𝑝𝑜𝑢𝑡

0 start point 4 0.030 0.005
16 event 4 0.030 0.015
31 change point 10 0.030 0.005
61 event 10 0.030 0.015
76 change point 2 0.030 0.005
91 event 2 0.030 0.015
106 change point 4 0.030 0.005
136 event 4 0.030 0.015

Table 1: The changes in generative models in section 6.1
where a combination of events and change points are ob-
served.

6 EXPERIMENTS
In this section, to study the performance and efficiency of LADdos
on large graphs, we conduct experiments in two controlled settings
with the SBM and the BAmodel. For both experiments, we compare
with the original LAD implementation and set the short term and
the long term window to be 5 and 10 time steps respectively. For
all experiments, we also set the number of probing vectors 𝑁𝑧 = 20
and the number of Chebychev moments 𝑁𝑚 = 50 as parameters
for DOS.

Performance Metrics Similar to [10], we use Hits at 𝑛 (𝐻@𝑛)
metric which reports the number of correctly identified time points
out of top 𝑛 steps with the highest anomaly scores. We also report
the execution time in seconds on a desktop with AMD Ryzen 5 1600
CPU and 16 GB memory. We use the ground truth labels planted in
the synthetic generation process for evaluation. The experimental
results are summarized in Table 3. Note that on SBM-7k and Ba-7k
experiments, the computational time for LAD is too costly with the
above resource set-up thus indicated as N/A.

6.1 SBM Experiments
The first set of experiment is conducted with the Stochastic Block
Model (SBM) [8]. SBM is a widely used graph generation model
with an emphasis on community structure [1]. The key parame-
ters of the SBM model are: 1). the partitioning of communities, 2).
the intra-community connectivity 𝑝𝑖𝑛 and 3). the cross-community
connectivity 𝑝𝑜𝑢𝑡 . For simplicity, we assume equal sized commu-
nities and instead focus on changing the number of communities
𝑁𝑐 . 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡 determines the probability of an edge existing
between nodes of the same community and different communities
respectively. They also control the sparsity of the dynamic graph.

We consider both change points and events similar to the difficult
Hybrid setting in [10]. We experiment with 1k nodes and 5k nodes
per snapshot and focus our discussion on results with 5k nodes
here. Change points corresponds to communities either merging
or splitting and events corresponds to temporary boost in cross-
community connectivity 𝑝𝑜𝑢𝑡 . The details of these anomalies are
shown in Table 1. Figure 2 shows that LADdos perfectly identifies
all the events and change points on a dynamic SBM graph with 5000
nodes. We also visualize the signature vectors (the number of sin-
gular values in each interval) as a heatmap. The events (time point
16,61,91,136) corresponds to an energetic burst in the signature
vector. Figure 1 shows the change in singular value distribution at
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Figure 2: LADdos perfectly recovers all events and change
points in the SBMmodel, experiment settings defined in Ta-
ble 1 on a dynamic graph with 5k nodes.

BA Model parameters
Time Point Type 𝑚

0 start point 1
16 change point 2
31 change point 3
61 change point 4
76 change point 5
91 change point 6
106 change point 7
136 change point 8

Table 2: The change points for BA model. 𝑚 is the number
of edges to attach from a new node to existing nodes. The
increased color intensity in the table indicates the increased
density of the network.

time point 76 where less communities results in a narrower distri-
bution. We also observe the reverse behavior where as the number
of community increases, the singular value distribution becomes
broader. Overall, Table 3 shows that LADdos can achieve similar
performance to LAD with a fraction of the computational time.

6.2 BA Experiments
We further investigate LADdos performance in the Barabási-Albert (BA)
model to show that LADdos is effective beyond the SBM model. In
this experiment, the change points correspond to the densification
of the network (parameter𝑚, increased number of edges attached
from a new node to an existing node). The details are described in
Table 2.

Figure 4 shows that LADdos is able to correctly detect all change
points in the BA model. The signature vectors or the DOS are visu-
alized as a heatmap. Interestingly, as graph gets increasingly dense
over time, it is visually harder to see the changes in the signature
vectors at anomalous points. In addition, the anomaly score as-
signed for the later change points are also smaller in magnitude.
Table 3 shows that LADdos is again performing as well as LAD
while being much lower in computational cost.

Figure 3: The change in DOS for BA model at time step 16.
Left is BA model with 𝑚 = 1 and right is BA model with
𝑚 = 2.
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Figure 4: LADdos perfectly recovers all events and change
points for the BA model, experiment setup explained in Ta-
ble 2.

Dataset SBM BA
# nodes 1k 5k 7k 1k 5k 7k

total edges 871k 21824k 42769k 687k 3451k 4833k
Metric Hits @ 7
LADdos 85.7% 100% 100% 100% 100% 100%
LAD [10] 100% 100% N/A 100% 85.7% N/A
Metric Execution Time (sec)
LADdos 19.1 185.9 362.6 19.2 105.3 175.7
LAD [10] 76.9 14934.8 N/A 78.1 15024.4 N/A

Table 3: LADdos can operate on large graphswhilemaintain-
ing the same performance as LAD. Each dynamic graph has
151 time steps.

Figure 3 visualizes the change in the distribution of singular
values of the Laplacian as approximated in DOS. For this particu-
lar change point, we observe drastic changes in the overall shape
of DOS. Therefore, by reasoning with the changes in DOS, LAD-
dos is able to correctly captures change points in the BA model
experiments.

7 DISCUSSION
Both LAD and LADdos models the changes in the distribution of
singular values of the Laplacian. As shown in Table 3, LADdos
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can correctly detect change points in large scale dynamic graphs
and even outperforms LAD in BA-5k experiment. As LADdos is an
approximation method, and it is still more accurate to compute the
exact SVD for small graphs (i.e. number of nodes smaller than 1000).
For large graphs, the DOS captures the distribution of singular
values as a form of spectral signature [5]. When compared to LAD,
LADdos achieves equal or better performance with only 1.0% and
0.7% of the computational time on SBM-5k and BA-5k experiment
respectively.

Recently, Rubin [17] showed that the spectral embedding of ex-
isting random graph models including graphons and other latent
position models should live close to a one-dimensional structure.
This suggests that the spectrum of an arbitarily large graph sam-
pled from a random graph model could be embedded into a low
dimensional vector. As shown in Figure 1 and 3, the change in the
distribution of singular values correspond closely to changes in
the generative model. Therefore, the DOS could be a natural way
to obtain the aforementioned low dimensional embedding. One
promising future direction would be to examine how the distri-
bution of singular values of the Laplacian matrix corresponds to
parameter changes in the random graph model.

8 CONCLUSION
To address the scalability challenge of existing change point de-
tection methods for dynamic graphs, we proposed LADdos, which
integrates the general framework of density of states (DOS) [5] as a
fast and efficient low dimensional embedding vector for each graph
snapshot. In experiments with the Stochastic Block Model (SBM)
and the Barabási-Albert (BA) model, we show that LADdos has
equal performance to the state-of-the-art LAD while achieving
100x speedup.
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