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ABSTRACT
Recent advances in deep learning have led to breakthroughs in
the development of automated skin disease classification. As we
observe an increasing interest in these models in the dermatology
space, it is crucial to address aspects such as the robustness towards
input data distribution shifts. Current skin disease models tend to
make incorrect inferences for test samples from different hardware
devices and clinical settings or unknown disease samples, which
are out-of-distribution (OOD) from the training samples. Toward
addressing this issue, we propose a simple yet effective approach
that detects these OOD samples prior to making any decision. The
detection is performed via scanning in the latent space represen-
tation (e.g., activations of the inner layers of a pre-trained skin
disease classifier). The input samples could also be perturbed to
maximise divergence of OOD samples. We validate our OOD detec-
tion approach in two use cases: 1) identify samples collected from
different protocols, and 2) detect samples from unknown disease
classes. Additionally, we evaluate the performance of the proposed
approach and compare it with other state-of-the-art methods. Fur-
thermore, data-driven dermatology applications may deepen the
disparity in clinical care across racial and ethnic groups since most
datasets are reported to suffer from bias in skin tone distribution.
Therefore, we also evaluate the fairness of these OOD detection
methods across different skin tones. Our experiments show com-
petitive performance across multiple datasets in detecting OOD
samples, which could be used in the future to design more effective
transfer learning techniques prior to classifying these samples.
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1 INTRODUCTION
Skin disease remains a global health challenge, with skin cancer
being the most common cancer worldwide [6]. Following the recent
success of deep learning (DL) in various computer vision problems
(partly due to its automated feature encoding capability), convolu-
tional neural networks (CNNs) [19] have been employed for skin
disease classification tasks. As we observe increasing interest in DL
in applying dermatology [11, 15], it is imperative to address trans-
parency, robustness, and fairness of these solutions [2, 29]. While
many existing deep learning techniques [3, 14, 23] achieve high
performance on publicly available datasets [6, 8, 33, 34], they utilize
ensembles of multiple models aimed at maximising performance
with limited consideration to shifts in the input data [3, 13, 35],
which might result in incorrectly classifying previously unknown
class samples as one of the training classes (with high confidence).

Thus, it is necessary to detect out-of-distribution (OOD) samples
prior to making decisions in order to achieve principled transfer
of knowledge from in-distribution (ID) training samples to OOD
test samples, thereby extending the usability of the models to previ-
ously unseen scenarios. Furthermore, OOD detectors and other DL
solutions need to guarantee equivalent detection capability across
sub-populations. Particularly in dermatology, bias in representa-
tions of skin tones in academic materials [24] and clinical care [30]
is becoming a primary concern. For instance, the New York Times
reports major disparities in dermatology when treating skin of
color [30] as common conditions often manifest differently on dark
skin, and physicians are trained mostly to diagnose them on light
skin. STAT [24] also reported that lack of darker skin tones in der-
matology academic materials adversely affects the quality of care
for patients of color. Alarmingly, the growing practice of using arti-
ficial intelligence to aid the diagnosis of skin diseases will further
deepen the divide in patient care because of the machine learning
algorithms, which are trained with such imbalanced datasets [6–
8, 33, 34] (with overwhelming majority of samples with light skin
tones). This is supported by the work of Kinyanjui et al. [21], which
use Individual Typology Angle (ITA) to approximate skin tones in
various publicly available skin disease datasets [6, 8, 33, 34] and
show that these datasets heavily under-represent darker skin tones.

To address this issue, we propose a simple yet effective approach
that scans over the activations of the inner layers of any pre-trained
skin disease classifier to detect OOD samples. We additionally per-
turb the input data beforehand with our proposed ODIN𝑙𝑜𝑤 , a
modification of ODIN [22], which improve OOD detection per-
formance in earlier layers of the network. In our framework, we
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define two different OOD use cases: protocol variations (e.g., dif-
ferent hardware devices, lighting settings and not compliant with
clinical protocol); and unknown disease types (e.g., samples from
new disease type that was not observed during training). Without
requiring any prior knowledge of the OOD samples, our proposed
approach improves or performs comparably to the existing OOD
detectors, softmax score [18] and ODIN [22] for both types of OOD
samples. We further explore how our proposed and existing OOD
detectors perform across skin tones to evaluate fairness. We show
that the current OOD detectors show higher performance in detect-
ing darker skin tones as OOD samples than those of lighter skin
tones, which is likely impacted by the imbalanced training skin
datasets that heavily lack samples of dark skin tones.

Generally, our main contributions are highlighted as follows: 1)
We propose a weakly-supervised approach based on subset scan-
ning over the activations of the inner layers of a pre-trained skin
disease classifier to detect OOD samples across two use cases: de-
tection of OOD samples from different collection protocol and
those from unknown disease classes; 2)We propose to perturb input
images with ODIN𝑙𝑜𝑤 noise, for improved OOD detection perfor-
mance;3) We evaluate our methods against existing OOD detectors:
Softmax Score [18] and ODIN [22]; Furthermore, we evaluate the
fairness of the proposed approach and existing methods in their
detection performance across skin tones.

2 RELATEDWORK
Our review of existing OOD detection methods is grouped into
pre-training [3, 4, 13, 35] and post-training [9, 27, 28], based on
where the detection step is applied.

Pre-training OOD detection approaches have prior knowl-
edge of the OOD samples and incorporate it during their train-
ing phases. Many of these approaches utilize ensembles of exist-
ing CNNs (and their variants) to detect OOD samples [3, 13, 35].
Ahmed et al. [3] applied one-class learning using deep neural net-
work features where one-class samples were iteratively discarded
as OOD samples in a one-vs-all cross-validation strategy, and the
OOD samples were detected by taking the prediction average of all
the models. Gessert et al. [13] utilized an additional dataset of skin
lesions as OOD samples to train their ensemble of CNNs to detect
OODs. Zhang et al. [35] employed an ensemble DenseNet-based
CNNs consisting of both multi-class and binary classifiers to detect
OOD samples. Bagchi et al. [4] proposed Class Specific - Known vs.
Simulated Unknown to detect OOD samples.

Post-training OOD detection approaches do not require any
prior knowledge of the OOD samples during training [9, 27, 28].
Pacheco et al. [27] detectedOOD samples using Shannon entropy [32]
and cosine similarity metrics on their CNN’s probability outputs.
Instead, Combalia et al. [9] detected OOD samples using Monte-
Carlo Dropout [12] and test data augmentation to estimate uncer-
tainty such as entropy and variance in their network predictions.
Pacheco et al. [28] extended Gram-OOD [31] with layer-specific
normalization of Gram Matrix values to detect OOD samples.

Table 1 summarizes notable OOD detection studies in dermatol-
ogy. The majority of these studies employ pre-training approaches
using ensembles of CNNs, which result in model complexity and
impracticality due to their need of prior knowledge of OOD samples.

Test data augmentation is also less plausible to domain experts as it
might partially re-synthesize the samples. In this work, we propose
a simple, post-training OOD detector that can be applied to any
single pre-trained network without any test data augmentation nor
prior knowledge of the OOD samples.

3 PROPOSED FRAMEWORK
We propose a weakly-supervised OOD detection method to identify
skin images collected in different validation protocols and derived
from unknown skin disease types, based on subset scanning [5]
and ODIN [22]. Subset scanning treats the OOD detection problem
as a search for the most anomalous subset of observations in the
activation space of any pre-trained classifier. This exponentially
large search space is efficiently explored by exploiting mathematical
properties of our measure of anomalousness [26]. Our solution can
be applied to any off-the-shelf skin disease classifier. Additionally,
we evaluate algorithmic fairness of the proposed and existing OOD
detectors across skin tones. The overview of the proposed approach
is shown in Fig. 1. Given a set of skin datasets 𝐷 and a pre-trained
skin disease classifier 𝐶 as an input; first, we stratify each dataset
through a skin tone distribution extractor𝑇 for evaluation purposes.
Then, we apply subset scanning across each layer of the classifier
𝐶 and compute the subset score for the unknown disease use case.
To detect protocol variations, we first perturb the input data for the
best performing results. In the following sections, we describe the
details of the proposed approach.

3.1 Subset scanning for out-of-distribution
sample detection

Given a pre-trained network 𝐶 for skin disease classification, we
apply subset scanning [5] on the activations in the intermediate
layers of the network 𝐶 to detect a subset (𝑆) of OOD samples (see
Algorithm 1). Subset scanning searches for the most anomalous
subset 𝑆∗ = argmax𝑆 𝐹 (𝑆) in each layer, where the anomalousness
is quantified by a scoring function 𝐹 (·), such as a log-likelihood ratio
statistic.When searching for this subset, an exhaustive search across
all possible subsets is computationally infeasible as the number of
subsets (2𝑁 ) increases exponentially with the number of nodes (𝑁 )
in a layer. Instead, we utilize a scoring function that satisfies the
Linear Time Subset Scanning (LTSS) [26] property, which enables
efficient maximization over all subsets of data. This LTSS property
guarantees that the highest-scoring subset of nodes in a layer are
identified within 𝑁 searches instead of 2𝑁 searches. Following the
literature on pattern detection [5, 25], we utilize non-parametric
scan statistics (NPSS) [25] as our scoring function as it satisfies
LTSS property and makes minimal assumptions on the underlying
distribution of node activations.

We apply subset scanning on set of layers 𝐶𝑌 of our pre-trained
network 𝐶 . For each layer 𝐶𝑦 ∈ 𝐶𝑌 , we form a distribution of
expected activations at each node using the known ID samples
𝑋𝑧 , which were used during training and can also be referred as
background images. Comparing this expected distribution to the
node activations of each test sample 𝑋𝑖 , we can obtain p-values
𝑝𝑖 𝑗 for each 𝑖𝑡ℎ test sample and 𝑗𝑡ℎ node of layer 𝐶𝑦 . We can then
quantify the anomalousness of the p-values by finding the subset of
nodes that maximize divergence of the test sample activations from
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Ensemble Test Data
Augmentation

OOD Detection
Post-Training

New Protocol
Detection

New Disease
Detection

Algorithmic
Fairness

[3] ✓ ✓ ✗ ✗ ✓ ✗

[35] ✓ ✗ ✗ ✗ ✓ ✗

[13] ✓ ✓ ✗ ✗ ✓ ✗

[4] ✗ ✗ ✗ ✗ ✓ ✗

[27] ✓ ✗ ✓ ✗ ✓ ✗

[9] ✗ ✓ ✓ ✗ ✓ ✗

[28] ✗ ✗ ✓ ✓ ✓ ✗

Ours ✗ ✗ ✓ ✓ ✓ ✓

Table 1: Summary of the state-of-the-art OOD sample detection in skin disease classification task, and the differentiation of
our proposed approach.

SD-198

ISIC 2019

Skin image datasets

Skin disease classifier

Skin tone 
distribution extractor 

Apply individual subset scanning with
 a scoring function to each strata

Extract anomalous nodes and
evaluation metrics

OOD Pipeline

Extract activations from   

Stratify data        by Disease 
and Skin tone

Optionally add ODINlow to each strata

Figure 1: Block diagram of the proposed approach. 𝐶: a trained model for skin disease classification over mentioned datasets
(D1, D2); 𝑇 : a skin tone extractor.

the expected. This yields |𝐶𝑌 | anomalous scores 𝑆∗(𝐶𝑦 ) for each test
sample. We expect OOD samples to yield higher anomalous scores 𝑆
than ID samples, and detect OOD samples with simple thresholding.
Note that the OOD detection is performed in an unsupervised
fashion without any prior knowledge of the OOD samples.

3.2 ODIN and ODIN𝑙𝑜𝑤 Perturbations
We have also evaluated the impact of adding small perturbations,
prior to subset scanning, to each test sample following ODIN [22]
for enhanced OOD. ODIN involves two steps, input pre-processing
and temperature scaling. In the first step, 𝑋𝑖 is perturbed by adding
a small perturbation computed by back-propagating the gradient
of the training loss with respect to 𝑋𝑖 and weighted by parameter
𝜖 . This pre-processed 𝑋𝑖 is then fed into the neural network and
temperature scaling with parameter 𝜏 is applied in the final softmax
layer 𝐶𝑠 . The two hyperparemters, 𝜖 and 𝜏 , are chosen so that the
OOD detection performance of softmax score [18], the maximum
value of the softmax layer output, is optimized. We further modified
ODIN and propose ODIN𝑙𝑜𝑤 with parameters 𝜏𝑙𝑜𝑤 and 𝜖𝑙𝑜𝑤 that
leads to the lowest softmax score performance. As subset scanning
is applied not only on the softmax layer but also on the the inner

layers of the network, we show that ODIN𝑙𝑜𝑤 helps improve OOD
detection in the earlier layers of the network.

3.3 Algorithmic fairness of OOD detectors
across skin tone

We further evaluate algorithmic fairness of our proposed OOD dec-
tector across skin tones, estimated by adopting an existing frame-
work [21]. To this end, the non-diseased regions of a given skin im-
age are segmented usingMask R-CNN [17], and individual typology
angle (ITA) values are computed as 𝐼𝑇𝐴 = arctan

(
𝐿𝜇−50
𝑏𝜇

)
× 180◦

𝜋 ,
where 𝐿𝜇 and 𝑏𝜇 are the average of luminance and yellow values of
non-diseased pixels in CIELab-space. ITA values are used to strat-
ify the samples into three Fitzpatrick skin tone categories, Light,
Intermediate, and Dark, as shown in Table 2.

4 DATASETS
We validate the proposed framework using two datasets: ISIC
2019 [6, 8, 34] for samples of unknown diseases; and SD-198 [33]
for samples from unknown collection protocols. We further stratify
these OOD samples based on skin-tones to observe the impact of
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Algorithm 1: Pseudo-code for the proposed OOD detector.

input :Background Image: 𝑋𝑧 ∈ 𝐷𝐻0 , Evaluation Image:
𝑋𝑖 , training dataset: 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝛼max.

output :𝐴𝑈𝑅𝑂𝐶 , 𝐹1, 𝐴𝑈𝑅𝑂𝐶𝑡 , and 𝐹 𝑡1 for 𝑋𝑖

1 𝐶 ← TrainSkinDiseaseClassifier (𝐷𝑡𝑟𝑎𝑖𝑛);
2 𝐶𝑌 ← Set of layers in 𝐶;
3 𝑋 𝑡

𝑖
← PredictITASkinTone (𝑋𝑖 );

4 𝑋𝑧 ← AddODIN (𝑋𝑧 ); 𝑋𝑖 ← AddODIN (𝑋𝑖 ) ;
5 for 𝐶𝑦 in 𝐶𝑌 do
6 for 𝑗 ← 0 to |𝐶𝑦 | do
7 𝐴

𝐻0
𝑧 𝑗
← ExtractActivation (𝐶𝑦 , 𝑋𝑧 );

8 𝐴𝑖 𝑗 ← ExtractActivation (𝐶𝑦 ,𝑋𝑖 );

9 𝑝𝑖 𝑗 =

∑
𝑋𝑧 ∈𝐷𝐻0 𝐼 (𝐴𝑧 𝑗>=𝐴𝑖 𝑗 )+1

𝑀+1 ;
10 𝑝∗

𝑖 𝑗
= {𝑦 < 𝛼max ∀𝑦 ⊆ 𝑝𝑖 𝑗 };

11 𝑝𝑠
𝑖 𝑗
← SortAscending (𝑝∗

𝑖 𝑗
);

12 for 𝑘 ← 1 to |𝐶𝑦 | do
13 𝑆 (𝑘) = {𝑝𝑦 ⊆ 𝑝𝑠

𝑖 𝑗
∀𝑦 ∈ {1, . . . , 𝑘}};

14 𝛼𝑘 =𝑚𝑎𝑥 (𝑆 (𝑘) );
15 𝐹 (𝑆 (𝑘) ) ← NPSS (𝛼𝑘 , k, k);
16 𝑘∗(𝐶𝑦 ) ← argmax 𝐹 (𝑆 (𝑘) );
17 𝛼∗(𝐶𝑦 ) = 𝛼𝑘∗(𝐶𝑦 )

;

18 𝑆∗(𝐶𝑦 ) = 𝑆 (𝑘∗(𝐶𝑦 ) )
;

19 𝐴𝑈𝑅𝑂𝐶 , 𝐹1 = ComputeDetection (
∑
𝐶𝑦

𝑆∗(𝐶𝑦 ) );

20 𝐴𝑈𝑅𝑂𝐶𝑡 , 𝐹 𝑡1 = StratifyPerSkinTone(𝑋 𝑡
𝑖
, 𝐴𝑈𝑅𝑂𝐶 , 𝐹1);

21 return 𝐴𝑈𝑅𝑂𝐶 , 𝐹1, 𝐴𝑈𝑅𝑂𝐶𝑡 , and 𝐹 𝑡1

various OOD methods across the population spectrum (see Fig-
ure 2).

4.1 ISIC 2019
ISIC 2019 [6, 8, 34] dataset is an extension of ISIC 2018 and merges
HAM10000 [34], BCN20000 [8], and MSK [6] datasets. It consists
of 25, 331 dermoscopic images among eight diagnostic categories:
Melanoma, Melanocytic nevus, Basal cell carcinoma, Actinic keratosis,
Benign keratosis, Dermatofibroma, Vascular lesion, and Squamous
cell carcinoma. As its test set is not available publicly, we set aside
Dermatofibroma (DF) and Vascular lesion (VASC) samples during
training, and utilize them during the test time as OOD samples of
unknown diseases. These two classes are chosen as they contain
the least number of samples in the dataset. Left panel of Figure 2
show example images of this dataset for each of the three skin tone
categories we consider in this work.

4.2 SD-198
SD-198 [33] dataset contains 198 different diseases from different
types of eczema, acne and various cancerous conditions, totalling
6, 584 images. The images are collected via various devices, mostly
digital cameras and mobile phones with higher levels of noise and
varying illumination. We use this dataset for OOD samples that are
collected from unknown protocols. We show some example images

ITA Range Skin Tone Category

𝐼𝑇𝐴 > 41◦ Light
28◦ < 𝐼𝑇𝐴 ≤ 41◦ Intermediate

𝐼𝑇𝐴 ≤ 28◦ Dark
Table 2: Summary of Fitzpatrick skin tone categorization of
computed 𝐼𝑇𝐴 values.

Light Inter. Dark Light Inter. Dark

Figure 2: Example images from ISIC 2019 [6] (left) and SD-
198 [33] (right) stratified into three skin tone categories:
Light, Intermediate (Inter.), and Dark.

of the dataset in the right panel of Figure 2 that are stratified into
three skin-tone categories, Light, Intermediate, and Dark.

5 EXPERIMENTAL SETUP
5.1 Skin disease model setup
We adopt DenseNet-121 [19] pre-trained on ImageNet [10] for the
skin disease classification task and fine-tune it on ISIC 2019 [6].
To accommodate for the change in number of classes for the skin
disease classification task, we resize the last four fully connected
layers of DenseNet to 512, 256, 128, and 7 nodes followed by a
SoftMax with 7 nodes for the seven skin disease classes. We use
Adam [20] optimization with a learning rate of 1𝑒−4 and a batch
size of 40. To address the class imbalance problem, we employ
weighted cross-entropy loss. The implementation is done with the
Python 3.6 [16] and TensorFlow 1.14 [1]. To validate detection of
unknown disease samples, we use DF and VASC classes from ISIC-
2019, consisting of 253 and 225 samples, respectively. Similarly, for
samples with different collection protocols, we extract 10 sets of
260 samples from SD-198 and report their aggregate performance.

5.2 Subset scanning setup
We apply subset scanning across eight layers 𝐶𝑌 consisting of six
convolutional layers (𝐶𝑐𝑜𝑛𝑣1 , ...,𝐶𝑐𝑜𝑛𝑣6 ), global pooling layer (𝐶𝑔𝑝 ),
and softmax layer (𝐶𝑠 ). For ODIN [22], we use temperature scaling
parameter 𝜏 = 10 and perturbation magnitude 𝜖 = 0 (optimized on
ISIC-2019) for SD-198 samples and 𝜏 = 5 and 𝜖 = 0.0002 (optimized
on SD-198) for ISIC-2019 samples. For ODIN𝑙𝑜𝑤 , we use 𝜏𝑙𝑜𝑤 = 2
and 𝜖𝑙𝑜𝑤 = 0.2, which leads to AUROC equal to 0.5 for Softmax
Score for both OOD use cases. We employ Area Under Receiver
Operating Characteristic Curve (AUROC) and maximum 𝐹1-score
(𝐹1) as our metrics to evaluate the OOD detection performance.

6 RESULTS
In this section, we show the result of proposed OOD detector with
subset scanning and ODIN as detailed in Section 3. We first compare
our result of OOD detection to Softmax Score [18] and ODIN [22] in
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Methods AUROC 𝐹1

Softmax Score [18] 74.4 ± 1.7 71.0 ± 1.1
ODIN [22] 74.5 ± 1.6 70.8 ± 1.1
SS (𝐶𝑠 ) 68.2 ± 1.4 71.3 ± 0.5

SS (𝐶𝑐𝑜𝑛𝑣1 ) 41.6 ± 1.8 68.1 ± 0.2
SS (𝐶𝑠 )+ODIN 51.2 ± 1.9 67.9 ± 0.3

SS (𝐶𝑐𝑜𝑛𝑣1 )+ODIN𝑙𝑜𝑤 85.4 ± 0.6 81.9 ± 0.6
SS (Sum All Layers)+ODIN𝑙𝑜𝑤 91.0 ± 0.8 86.9 ± 1.1

Table 3: Detection performance for OOD samples of un-
known collection protocols validated with SD-198 [33]. Bold
values are the best performers in each column.

Tables 3 for OOD samples with different collection protocol and in
4 for OOD samples with unknown disease types. We further stratify
OOD samples based on skin tone for these approaches and report
their performance in Table 5. We show in Figure 3 the detection
performance of our proposed method on individual layers across
our network and further stratify these performances across skin
tone in Figure 4.

6.1 OOD samples from a different protocol or
equipment

We first show the result of detecting OOD samples that are col-
lected with different protocols or equipment. Table 3 summarizes
the results of the proposed approach - subset scanning (SS) with and
without noise, and compared with the existing baselines [18, 22].
In the top panel, we see that ODIN [22] increases the AUROC per-
formance of Softmax Score by around 0.1 on average. For samples
with ODIN noise, we show the performance of subset scanning
on the softmax layer 𝐶𝑠 , as ODIN is optimized on Softmax Score,
and for samples with ODIN𝑙𝑜𝑤 noise, we show the result of subset
scanning on the first convolutional layer (𝐶𝑐𝑜𝑛𝑣1 ). We achieve the
best performance with AUROC of 91.0±0.8 and maximum 𝐹1-score
of 86.9 ± 1.1 using the sum of subset scores 𝑆∗(𝐶𝑦 ) across all eight
layers with ODIN𝑙𝑜𝑤 (bottom row in Table 3).

Methods AUROC 𝐹1
DF VASC DF VASC

Softmax Score [18] 80.9 73.2 76.5 70.5
ODIN [22] 72.3 65.3 70.3 67.4

SS (𝐶𝑠 ) 80.8 70.8 75.7 72.3
SS (𝐶𝑐𝑜𝑛𝑣1 ) 50.9 62.5 65.8 68.7

SS (𝐶𝑠 )+ODIN 71.8 63.3 70.4 67.4
SS (𝐶𝑐𝑜𝑛𝑣1 )+ODIN𝑙𝑜𝑤 47.6 39.8 65.9 67.1

SS (Sum All Layers)+ODIN𝑙𝑜𝑤 47.6 40.4 65.9 67.2
Table 4: Performances of detecting OOD samples of un-
known disease types, DF and VASC. Bold values are the best
performers in each column.

6.2 OOD samples of unknown diseases
Table 4 shows the performance of detecting OOD samples of un-
known diseases (DF and VASC) that are unseen during training.
While Softmax Score [18] yields the best performance, subset scan-
ning on the softmax layer 𝐶𝑠 shows comparable performance. We
see worse performances with ODIN as these OOD samples are from
the same dataset as ID samples and adding noise likely blurs the
unique features present in each skin disease class.

6.3 Performance stratified by skin-tone
We further stratify the OOD samples into three skin tone categories
and show the results in Table 5. In each set of columns, we include
the number of test samples 𝑅 for each skin tone category and its
corresponding AUROC performance. Samples of Dark skin tones
constitute only around 3.9% of DF and VASC samples and around
13% of SD-198 samples. Majority of the listed methods (13 out of 18),
show higher detection performance of Dark OOD samples. This
could be partially because the network is trained on datasets that
heavily lacks samples of dark skin tones, and thus easily detects
OOD samples of dark skin tone to be out of distribution. Overall, it
requires further investigation to clearly understand whether such
performance reveals the lack of Dark samples in these datasets or
variant manifestations of skin diseases in Dark skin.

SS SS+ODIN SS+ODIN𝑙𝑜𝑤

Figure 3: AUROCperformance of subset scanning (SS) across
various layer of DenseNet-121 that we consider. First col-
umn shows the results without any ODIN, the other two
columns show the result with ODIN and ODIN𝑙𝑜𝑤 , respec-
tively for OOD samples of DF (yellow), VASC (green), and
SD-198 (red).

6.4 OOD detection across individual layers
Figure 3 shows the OOD detection performance in terms of AU-
ROC of our proposed work on the eight layers of our pre-trained
CNN in 𝐶𝑌 that we consider. The first column shows the result of
subset scanning without any added noise, and the other columns
show the result of applying ODIN [22] and ODIN𝑙𝑜𝑤 perturbations,
respectively, to our test images before applying subset scanning.
In each sub-plot, we show results of both use cases, i.e., detection
of samples of unknown diseases (DF (yellow), VASC (green)) and
samples from different protocols (SD-198 (red)). Overall, DF and
VASC samples from ISIC 2019 dataset have similar performance
across the eight layers we consider while samples from SD-198
dataset leads to varying performances depending on the layer and
ODIN parameters. This is partly because DF and VASC samples are
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Methods Skin Tone
Unknown diseases Collection protocol

DF VASC SD-198
R AUROC R AUROC R AUROC

Softmax Score [18]
Light 171 81.0 185 72.1 986 75.8

Intermediate 52 80.7 58 75.8 1278 73.7
Dark 10 74.9 9 77.0 326 73.2

ODIN [22]
Light 171 71.6 185 64.0 986 76.2

Intermediate 52 69.9 58 64.9 1278 73.8
Dark 10 86.3 9 89.4 326 72.1

SS (𝐶𝑠 )
Light 171 78.6 185 70.7 986 68.3

Intermediate 52 87.0 58 71.3 1278 68.0
Dark 10 87.6 9 69.5 326 68.6

SS (𝐶𝑠 )+ODIN
Light 171 69.7 185 62.7 986 52.1

Intermediate 52 73.8 58 63.1 1278 50.6
Dark 10 88.2 9 74.5 326 50.9

SS (𝐶𝑐𝑜𝑛𝑣1 )
+ ODIN𝑙𝑜𝑤

Light 171 45.1 185 38.8 986 83.1
Intermediate 52 49.9 58 37.8 1278 86.7

Dark 10 63.6 9 68.4 326 87.2

SS (Sum All Layers)
+ ODIN𝑙𝑜𝑤

Light 171 45.1 185 38.4 986 89.3
Intermediate 52 51.8 58 40.0 1278 92.0

Dark 10 56.2 9 78.7 326 92.3

Table 5: Performance of methods in Tables 3 and 4 stratified into three different skin tone categories. 𝑅 represents the number
of OOD samples in each category. Bold values show the best performing skin tone category in each panel.

from the same distribution as the training set as they are both from
the same ISIC 2019 dataset, while SD-198 has different distribution
than the training set of ISIC 2019 with different collection protocol.
Comparing the last two plots, we see that standard ODIN leads to
better performance near the end of the network while ODIN𝑙𝑜𝑤

leads to better performance in earlier layers of the network. This
is as expected as ODIN parameters (𝜏 and 𝜖) are optimized on the
Softmax Scores while ODIN𝑙𝑜𝑤 parameters, 𝜏𝑙𝑜𝑤 and 𝜖𝑙𝑜𝑤 , are not.

We further stratify the performance of individual layers based on
skin tone represented in the samples and show the change in AU-
ROC with the stratification in Figure 4. While the samples of Light
(blue) and Intermediate (magenta) skin tones show consistent per-
formances throughout the layers, we see varying performances for
samples of Dark (cyan) skin tones. This instability of performance
for Dark skinned samples may be partially because the network is
trained on a datasets that heavily lacks samples of Dark skin tones.

7 CONCLUSION
Wepropose a weakly-supervisedmethod to detect OOD skin images
(collected in different protocols or from unknown disease types)
using input perturbation and scanning of the activations in the inter-
mediate layers of pre-trained on-the-shelf classifier. The scanning
of activations is optimised as a search problem to identify nodes in
a layer that results in maximum divergence of the activations from
subset of test samples compared to the expected activations derived
from the ID training samples. We exploited LTSS [26] property
of subset scanning to achieve efficient search that scales linearly

with the number of nodes in the a layer. Our proposed method
improves on the state-of-the-art detection for OOD samples that
are collected from a different protocol or equipment than those
ID samples used to train the classifier, and it achieves competitive
performance with the state-of-the-art in detecting samples of un-
known diseases. We further stratify these OOD samples based on
three skin tone categories, Light, Intermediate, and Dark. From our
results we observe imbalanced detection performance across skin
tones, where the Dark samples are detected as OOD with higher
performance. Thus, future work aims to understand the reasons
for such detection disparity across skin tones, e.g., lack of training
representation or different manifestation of skin diseases.
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