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ABSTRACT
Detecting anomalies in large complex systems is a critical and
challenging task. The difficulties arise from several aspects. First,
collecting ground truth labels or prior knowledge for anomalies
is hard in real-world systems, which often leads to limited or no
anomaly labels in the dataset. Second, anomalies in large systems
usually occur in a collective manner due to the underlying depen-
dency structure among devices or sensors. Lastly, real-time anomaly
detection for high-dimensional data requires efficient algorithms
that are capable of handling different types of data (i.e. continuous
and discrete). We propose a correlation structure-based collective
anomaly detection (CSCAD) model for high-dimensional anomaly
detection problems in large systems, which is also generalizable
to semi-supervised or supervised settings. Our framework utilize
graph convolutional network combining a variational autoencoder
to jointly exploit the feature space correlation and reconstruction
deficiency of samples to perform anomaly detection. We propose
an extended mutual information (EMI) metric to mine the internal
correlation structure among different data features, which enhances
the data reconstruction capability of CSCAD. The reconstruction
loss and latent standard deviation vector of a sample obtained from
the reconstruction network can be perceived as two natural anoma-
lous degree measures. An anomaly discriminating network can
then be trained using low anomalous degree samples as positive
samples, and high anomalous degree samples as negative samples.
Experimental results on five public datasets demonstrate that our
approach consistently outperforms all the competing baselines.

CCS CONCEPTS
• Information systems → Embedded systems; Data mining; •
Computing methodologies→ Neural networks.
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1 INTRODUCTION

Figure 1: Sensory data and anomaly status from an human
activity dataset: (a) Normalized readings of two sensors over
time. (b) Reconstruction error and the norm of latent stan-
dard deviation vector of samples evaluated using a VAE.

Efficiently detecting faults or anomalies is vital to safeguard
the daily operation of many large complex systems. Typical appli-
cations including manufacturing system fault detection, network
intrusion detection, abnormal bioactivities discovery and so on
[1, 21]. Although extensive anomaly detection studies have been
conducted in the past, developing a robust anomaly detection tech-
nique for large systems with complex internal structures is still a
challenging task to solve. The challenges arise from several aspects.

First, unlike other data-driven tasks, collecting ground truth la-
bels or prior knowledge for anomalies in complex systems is much
harder. Anomalies are typically rare in the population, leading to
highly unbalanced datasets. In many real-world systems, anomaly
labels are collected through manual inspection, leading to very lim-
ited or even no anomaly labels being collected. In extreme cases, it is
even impossible to know the basic information about the anomalies
in the system, which forbids the use of many anomaly detection
algorithms with a predetermined threshold (e.g. anomalous degree
threshold or the proportion of anomalies in the data) [7, 27, 31].
Due to these facts, unsupervised anomaly detection algorithms [25]
that can adaptively learn the discriminating boundaries of normal
and anomaly samples are particularly desirable.

Second, most sensors in large complex systems do not work
independently. Many anomaly detection scenarios involve compli-
cated internal dependency structures among sensors or devices.
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For example, sensors monitoring different parts of a manufacturing
system typically have a complex interdependent relationship. Fault
from a sensor can propagate to other dependent sensors, causing
cascading failures in parts or the entire system. This is also referred
to as collective anomaly [4, 5, 28, 29]. Under such circumstances, an
anomaly might not be that anomalous by checking a single data
feature but could be identified as an anomaly when checking multi-
ple related features simultaneously. Considering the feature space
correlation to analyze the change in the underlying correlation
structural pattern facilitates better modeling the operation charac-
teristics of the system, leading to more accurate and robust results.
This is particularly important in detecting early-stage anomalies
when the anomalous pattern is not significant.

Lastly, sensory data collected in large systems typically involve
data with different properties (e.g. static and time-series) or types,
such as continuous (e.g. temperature reading from a sensor) and
discrete (e.g. on/off status of a switch) data. A unified approach
is needed to handle different types of data and generalizable to
time-series settings.

In this paper, we propose a highly adaptive correlation structure-
based anomaly detection (CSCAD) framework to address the afore-
mentioned challenges. We consider the behavior of anomalies from
three aspects: (1) break down of the original feature space correla-
tion patterns (e.g. correlated features exhibit different correlation
pattern); (2) anomalous samples are harder to reconstruct compared
with normal samples, as they possess different statistical patterns;
and (3) anomalous samples have larger variance when explaining
using a model trained with the complete dataset. We illustrate the
above anomalous behavior using a simple human activity dataset
[12]. In Figure 1(a), anomalies occur when two positively corre-
lated sensors suddenly become uncorrelated; and in Figure 1(b),
the reconstruction error and latent standard deviation evaluated
using a variational autoencoder (VAE) are observed to be highly
discriminative features for the anomaly detection task.

Based on above observations, we use a graph convolutional vari-
ational autoencoder as the reconstruction network to capture the
feature space correlation and reconstruction deficiency of samples,
and further perform detection using a feedforward neural network
as the discriminating network. Graph convolutional layers are used
in the reconstruction network to mine the hidden structure in the
feature space of data, which is constructed using a new correlation
evaluationmetric, the extendedmutual information (EMI). It is capa-
ble of handling different types of data (continuous and categorical)
and generalizable to time-series data. The feature space correlation
provides extra information about the internal correlation structure
among different features, thus enhances the data reconstruction
capability of the model. Two anomalous degree measures, the re-
construction loss (measures reconstruction difficulty) and the latent
standard deviation (measures internal variance) of samples can be
obtained from the trained reconstruction network. The discriminat-
ing network is then trained using low anomalous degree samples as
positive samples, and high anomalous degree samples or samples
with anomaly labels as negative samples. This design allows the
training process of the framework can be performed in an unsuper-
vised manner without the need of introducing any predetermined
anomaly threshold. Moreover, the proposed framework is highly
flexible, which is also applicable to semi-supervised or supervised

settings when parts or complete anomaly labels are available, and
can be easily extended to model high-dimensional time-series data.
Experiments on five public datasets show that the proposed frame-
work, as well as its time-series extension, consistently outperform
all the baselines in terms of precision, recall and F1 score, which
demonstrate the effectiveness and extensibility of our framework.

2 RELATEDWORK
There is extensive literature related to anomaly detection. Our
focus is mainly restricted to high-dimensional collective anomaly
detection problem with few or no anomaly labels (see [2, 8, 23]
for a wider scope survey). In this scope, most recent works tend
to utilize a reconstruction-based approach or evaluate an anomaly
score to solve the anomaly detection problem.

Reconstruction-based anomaly detection. The main assump-
tion of reconstruction-based approach is that anomalous samples
have different patterns compared with normal samples, hence are
more difficult to be reconstructed. The anomalous degree of a data
sample can be reflected by the loss or distance between the origi-
nal and reconstructed data samples generated by some statistical
or neural models. Classic methods include principal component
analysis (PCA) with explicit linear projections [13], and the im-
proved version, robust principal component analysis (RPCA) [7],
[15], which makes PCA more robust by enforcing sparse structures.
Inspired by RPCA and deep learning techniques, Zhou and Paf-
fenroth [30] introduce a robust deep autoencoder (RDA) model
which split the input data into reconstructed part and noise to
improve the robustness of standard deep autoencoders. Other meth-
ods [10], [24], [19] detect anomalies using generative adversarial
networks (GANs) [14]. The idea is that anomalies differ from the
distribution of normal samples, which makes it difficult to generate
similar non-anomalous samples through GANs. The weakness of
this reconstruction-based approach lies in the need of a reliable
data reconstruction model. A low-capacity model is unable to cap-
ture the complex patterns in the data, resulting in model-induced
reconstruction deficiency.

Anoamly score-based anomaly detection. Another class of
methods detect anomaly based on some anomaly representation
score calculated by conventional or deep learning models. Data
samples are considered as anomalous when they are located in
a low density/probability region of the training data. Traditional
methods include kernel density estimation [22] and Robust-KDE
[17]. These methods are known to be problematic dealing with high-
dimensional data due to the curse of dimensionality. To mitigate
this problem, some studies [7] adopt a two-step process, which first
compresses the high-dimensional data into low-dimensional latent
representations using deep autoencoders, and then applies a density
or distance-based model on the low-dimensional space to detect
the anomaly. Some recent works combine these two steps and di-
rectly learning an anomaly score that perform density/probability
estimation. Zhai et al. [27] utilize an energy-based autoencoder
model to map each data sample to an energy score. Zong et al. [31]
use a compression network combined with the Gaussian mixture
model to estimate the density of each sample and further detect
the anomaly. Other methods [3], [26], [16] use a variant of VAE
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Figure 2: Proposed framework for collective anomaly detection

to learn the probability density of each sample and identify the
low-probability samples as anomalies. A major drawback of many
anomaly score-based methods is the need to specify some thresh-
olds for the anomaly score or proportion of anomalies in the data
to discriminate normal or anomalous samples, which involves ad-
ditional assumptions on the data.

In this work, we combine the merits of both aforementioned ap-
proaches while overcomes their drawbacks. We exploit the internal
correlation structure in data features and use a high-capacity model
for data reconstruction. We further train a small discriminative
network to perform detection using the data reconstruction loss
and latent standard deviation. The proposed framework is highly
adaptive, which can be used with limited or no anomaly labels, and
easily generalizable to high-dimensional time-series data.

3 OVERALL FRAMEWORK
We consider the problem of collective anomaly detection in large
complex systems. LetX be the space of all samples in a system, with
the ith sample denoted as Xi = (xi1, · · · , xim )T , with xi j as the
feature or sensor of sample Xi in dimension j. We judge a sample
Xi to be normal or anomalous based on three criteria: (1) break
down of usual feature space correlation pattern; (2) difficulty in
reconstructing using a model trained using the complete dataset,
and (3) latent space embedding exhibits high variance.

Our framework adopts the following design to incorporate the
three criteria. First, the hidden structure of the feature space is
mined using a new extended mutual information (EMI) metric,
which constructs a correlation structure graph among features. A

reconstruction network modeled as graph convolutional variational
autoencoder is then trained to generate two sample anomalous de-
gree measures (reconstruction loss d and latent standard deviation
σz ) by capturing the feature space correlation and perform robust
sample reconstruction. The two anomaly degree measures are used
as the inputs of a discriminative network to predict the final anoma-
lous probability. The training of the discriminative network adopts
a self-learning mechanism, which uses low anomalous degree sam-
ples as positive samples, and high anomalous degree samples or
samples with anomaly labels as negative samples. An illustration
of the proposed framework can be found in Figure 2.

3.1 Correlation Structure Mining
Large complex systems typically have large amount of sensors
involving both continuous (e.g. temperature readings from a ther-
mometer) and discrete (on/off status of a switch) data; some may
be time varying and others are static. Most existing correlation
measures, such as Pearson correlation coefficient, cross-variance
and mutual information (MI), only work for data with identical
types. In order to mine the correlation structure across multiple
types and properties of data features, a generic metric is needed. We
proposed the extended mutual information (EMI) metric extending
the work of Galka et al. [13] to measure the correlation between
features with different characteristics.

EMI is based on information theory and directly works with
probabilistic distributions of variables, which can be applied to
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Figure 3: Illustration of the correlation mining process

both continuous and categorical data, and generalizable to time-
series data. A llustration of the correlation mining process using
EMI see Fig. 3

Time-series MI. The MI between two random variables x and
y is defined as the Kullback-Leibler (KL) divergence between the
joint distribution p(x, y) and the product of their marginals p(x)
and p(y): I (x, y) =KL(p(x, y)| |p(x)p(y)). Galka et al. [13] proposed
an improved version of MI, which generalizes the MI for time-series
data. Let xt and yt be two time-series random variables at time step
t , the generalized MI can be written as:

I (x, y) = logp((x1,y1), · · · , (xNt ,yNt ))−

log(p(x1, · · · , xNt )p(y1, · · · ,yNt )
(1)

As the high-dimensional joint distributionsp((x1,y1), · · · , (xNt ,yNt )),
p(x1, · · · , xNt ) andp(y1, · · · ,yNt ) are complicated to estimate, Galka
et al. [13] suggests removing the self-temporal correlation of the
data by a whitening operation which utilizing a predictive model
E(·) to approximate the conditional means of variables, such that
the whitened data satisfy the I.I.D. property (see [13] for details).
Let ϵ(·) represent the whitened form of data, which is the residual
between the original and predictive conditional mean of data. The
time-series MI can thus be evaluated as:

I (x, y) = log(p(ϵx1 , ϵy1 ) · · ·p(ϵxNt , ϵyNt ))−
log(p(ϵx1 ) · · ·p(ϵxNt )p(ϵy1 ) · · ·p(ϵyNt ))

(2)

Extended MI (EMI). With the nice statistical property of the
whitened residuals, the key to compute the mutual information
between two variables with different types lies in finding a uni-
fied predictive model to approximate the conditional means of the
variable E(·), as well as defining the residual for discrete variables.

Based on time-series MI, we propose an extended version of MI
to cover different types of data. There are two key ingredients of
EMI: (1) a unified predictive model to perform temporal whitening
for different types of data; and (2) a new scheme to properly define
the “residual” of whitened discrete variables.

For both continuous and discrete variables, we can perceive the
conditionalmean E(·) as a temporal predictorxt = f (xt−1, xt−2, · · · )
that predict the data value at time t given historical time-series
information. In order to unify the predictive model for different
types of data, we calculate the conditional mean using a regres-
sion tree (for continuous data) or a decision tree (for discrete
data) given historical time-series data from a sliding time win-
dow. And for the conditional mean of the joint of two variables

E((xt ,yt )|(xt−1,yt−1), (xt−2,yt−2), · · · ), we can still use the regres-
sion tree regardless the types of xt and yt , as the regression tree
can handle both the continues and discrete data. The reasons that
we choose the tree-based model to estimate the conditional means
are because: (1) tree-based model can deal with different type of
variable; (2) it can capture both the linear and non-linear relation-
ship in the temporal data; (3) it is effective and simple, which help
to reduce the computational cost during correlation evaluation for
high-dimensional data.

Another challenge of evaluating mutual information between
two variables across different data types is to properly define the
residual for discrete variables, as simple subtraction is no longer
well-defined for discrete variables. To address this issue while guar-
antee the linear transformation for the variable, we encode the
discrete variables as one-hot encoded vector (m-dimensional vector
if hasm discrete states), and calculate vector subtraction results
®yi − ®yj . There are a total ofm2 −m + 1 possible outcomes of ®yi − ®yj
(each element in them-dimensional vector ®yi − ®yj takes value of
-1, 0, 1), therefore, we encode different outcomes of the vector sub-
traction as a newm2 −m + 1 dimensional one-hot encoded vector
®z and use it as the residual for discrete variables. The residual is a
lossless recording of the transition between different discrete states
of the variables and is well-defined.

Finally, we can unify the whitening operation as follows:

ϵzNt = zNt ⊖ TZ (zNt |zNt · · · z1) (3)

where TZ (·) is the trained tree-based predictive model for vari-
able Z ; ⊖ is the subtraction operation when z is continuous and is
the previously defined discrete residual operation if z is discrete.

After obtain the whitened residuals for the time-series data of the
system, the marginal distribution of p(ϵt (x |x)) and p(ϵt (x |(x,y)))
can be estimated either by non-parametric statistics or methods
such as kernel density estimation(KDE) (for continuous residuals)
or simply count the proportion of each discrete residual state (for
discrete residuals). For the joint distribution p(ϵt (x |x,y), ϵt (y |x,y))
involving both continuous and discrete variables, it is calculate as:

p(ϵt (x |x,y), ϵt (y |x,y)) = p(ϵt (x |x,y)|ϵt (y |x,y))p(ϵt (y |x,y)) (4)

where x is a continuous variable, and y is a discrete variable.
The conditional probability of p(ϵt (x |x,y)|ϵt (y |x,y)) can be esti-
mated by a set of non-parametric statistics conditioned on each
discrete state of y. Finally, we can use Eq.1, 2 to obtain the MI-based
correlation for two time-series variables with arbitrary types.

With the extended data whitening scheme, the MI of data with
different types can be evaluated in a similar procedure as discussed
in [13]. The proposed EMI allows evaluating correlation for both
continuous and categorical data, and generalizable to time-series
data. We use EMI to evaluate the pairwise correlation between
different features of data, from which a correlation structure graph
can be constructed, with nodes represent data features, and edges
represent the pairwise correlation of the two features.
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3.2 Reconstruction Network
A notable characteristic of anomalies is that they are harder to re-
construct compared with normal samples [31]. Inspired by this ob-
servation, we design a graph convolutional variational autoencoder
as the reconstruction network for sample reconstruction, which is
a combination of graph convolutional neural network (GCN) and
variational autoencoder (VAE) [18] (see Figure 2 (b)). We use GCN
layers to capture the correlation structure of features mined using
the EMI. Hence when data features exhibit distinct correlation pat-
terns, the outputs filtered by the GCN layers will facilitate enlarging
the reconstruction error evaluated by the VAE. Furthermore, we
use the VAE rather than a conventional autoencoder. As VAE can
learn a latent mean and a latent standard deviation vector, which
can be perceived as the denoised mean and the internal variance
of the sample embedding, thus extracts more detailed information
about the anomalous behavior of a sample.

We use the GCN layer proposed in Defferrard et al. [11] to model
the correlation structure in the feature space. Consider a spectral
convolution on graph defined as the multiplication of a graph signal
X ∈ Rm×c with a filterдθ parameterized by θ in the Fourier domain:

дθ ⋆G X = дθ (L)X = дθ (UΛUT )X = Uдθ (Λ)U
TX (5)

whereU ∈ Rm×m is the matrix of eigenvectors, and Λ ∈ Rm×m

is the diagonal matrix of eigenvalues of the normalized graph Lapla-
cian L = IN − D

1
2ΛD

1
2 = UΛUT , where IN is the identity matrix,

D ∈ Rm×m is the diagonal degree matrix with Dii =
∑
j Ai j and A

is the adjacency matrix of the correlation structure graph. Directly
perform convolution operation using above formulation is com-
putationally expensive. Defferrard et al. [11] used the Kth-order
polynomial in the Laplacian to enable fast evaluation, which re-
stricts the GCN to capture the information at maximumK step away
from the central node (K-localized). The corresponding graph con-
volutional operator and the lth layer output of GCN H (l ) ∈ Rm×d

given activation function f (·) are given as:

дθ (L)X =
K−1∑
k=0

θkL
kX , H (l+1) = f

( K−1∑
k=0

θkL
kH (l )

)
(6)

The subsequent VAE component of the reconstruction network
takes the outputs from the GCN layer to perform a robust recon-
struction. VAE forces its encoder to generate a latent vector z that
roughly follow a Gaussian distribution, which is parameterized by
a latent mean vector µz , and a latent standard deviation vector σz .
µz and σz can be perceived as embeddings of the denoised mean
and the internal uncertainty level of a sample, which provides im-
portant information about the anomalous degree of the sample.
Given a dataset of N samples, the reconstruction network can be
trained in a similar manner as VAE using variational inference [18]
by minimizing the following objective function:

J (θ,ϕ) =
1
N

N∑
i=1

L(Xi , X̂i ) +
λ

N

N∑
i=1

DKL(qϕ (zi |Xi )| |pθ (zi )) (7)

where L(Xi , X̂i ) = | |Xi−X̂i | |
2
2 is the loss between original sample

Xi and reconstructed sample X̂i . The KL divergenceDKL(qϕ (z |X )| |pθ (z))

forces the approximated posterior distribution qϕ (z |X ) to be similar
to the prior distribution pθ (z), which improves the robustness of
reconstruction when separating the internal noise from input data.

The proposed reconstruction network can be easily extended to
model high-dimensional time-series data. This is done by introduc-
ing the recurrent neural network layer (e.g. LSTM, GRU) after GCN
layer to capture temporal information across different time steps.

3.3 Discriminating Network and Detection
Strategy

Generation of anoamlous degreemeasures. Utilizing the trained
reconstruction network, we derive two anomalous degree measures
to support anomaly detection:

• The reconstruction loss ®di =
[
(xi1 − x̂i1)2, · · · , (xim − x̂im )2

]T
is the element-wise reconstruction loss calculated by original
sampleXi and reconstructed sample X̂i . We generate X̂i by apply-
ing the decoder of GCVAE on the latent mean vector µz rather
than the sampled latent vector z. As X̂i generated from µz is
deterministic and can be perceived as a denoised version of Xi ,
which helps reconstruction loss d more accurately reflect the
reconstruction difficulty of a sample. As a result, a sample with a
larger d indicates a higher anomalous degree.

• The latent standard deviation σz represents the internal variance
level of a sample. It is another anomalous degree measure which
reflects the uncertainty of the input data. A sample with high
uncertainty or significantly deviate from the regular patterns of
the data is likely to be an anomaly.

These two anomalous degreemeasures providemore detailed anoma-
lous information of a sample to allow users to “interpret” the results.
The reconstruction loss and latent standard deviation are given as
a vector indicating the reconstruction difficulty and uncertainty
level of each feature (e.g. each sensor), which can also help locate
the most problematic sensors in the system.

Anomaly discriminating. We construct a discriminating net-
work using reconstruction loss d and latent standard deviation σz
as inputs (see Figure 2 (c), (d)). In the discriminating network, d
and σz are first fed into two sets of fully connected layers. Their
outputs are then concatenated and fed into two fully connected
layers to output the final anomalous probability of a sample.

Training the discriminating network requires anomaly labels
in the data, which can be difficult to acquire. We take an alterna-
tive approach by utilizing the already obtained anomalous degree
measures d and σz . We first evaluate d and σz of all samples in
the training set, and rank the samples according to their norms
(| |d | |2, | |σz | |2). Considering that the anomalies are typically rare in
the population, and a sample with larged or σz might be anomalous.
We label 50% (the proportion can be flexibly adjusted according to
different real-world datasets) of low anomalous degree samples as
positive samples. The negative samples are selected based on a very
conservative criterion, that we only select a very small proportion
of high anomalous degree sample (e.g. top 2.5%) as negative samples.
The discriminating network is trained only using selected positive
and negative samples. When parts or full anomaly labels are avail-
able, the actual anomalies can be used as negative samples, which
enables the proposed framework adaptable to semi-supervised or
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Figure 4: Proposed framework for collective anomaly detection in time-series settings

supervised settings. The proposed strategy does not need to specify
a predetermined anomaly threshold that typically used in anomaly
score-based methods [3, 16, 26, 27, 31], and capable of learning
complex high-dimensional separation boundaries between normal
and anomalous samples.

At the detection stage, the reconstruction loss d and latent stan-
dard deviation vector σz are obtained using the trained reconstruc-
tion network. They are fed into the trained discriminating network
to evaluate the final anomalous probability of the given sample (see
Figure 2 (d) for detailed illustration).

3.4 Time-Series Extension
The proposed CSCAD framework can also be generalized to time-
series settings. We focus on the collective anomaly detection prob-
lem that finds anomalies at time step t + 1 based on previous k
time steps’ data (t − k + 1, · · · , t ). Let the sample at time step t
be Xt = (xt1, xt2, · · · , xtm )T . We use EMI to construct the feature
space correlation structure graph of the time-series data. The recon-
struction network is modified to include an LSTM layer to capture
the temporal characteristics of the data. The time-series data Xt at
each time step is first fed into the GCN layer, and the sequence of
the GCN outputs are then modeled using the LSTM layer. The VAE
component takes the final output of the LSTM layer and generates
the latent mean and standard deviation of samples to support anom-
aly detection. The discriminating network and detection strategy
remain the same as in the previous section. A illustration of the
time-series extension framework see Fig. 4

4 EXPERIMENTAL RESULT
In this section, we use public benchmark datasets to demonstrate
the effectiveness of the hidden structure-based collective anomaly
detection (CSCAD) framework against several competing baselines.

4.1 Dataset
We use five public datasets from UCI machine learning reposi-
tory [12] in our experiments, including KDDCUP, Thyroid, MoCap,
UJIIndoorLoc for the static version of the framework, and Hetero-
geneity for the time-series extension of the framework. Detailed
statistics of each dataset is presented in Table 1.

Table 1: Statistics of the four public datasets

Dimensions Instances Anomaly ratio
KDDCUP99 121 494,021 20%
Thyroid 13 19,016 10%
MoCap 36 15,963 8.5%

UJIIndoorLoc 522 10,000 7.5%
Heterogeneity 6 54,000 20%

• KDDCUP. The KDDCUP99 dataset consists of 34 continuous and
7 categorical features. The categorical features are encoded using
one-hot encoding, resulting in a dataset of 121 dimensions. As
only 20% of samples are labeled as “normal” and 80% are labeled
as “attack”, therefore, we treat “normal” samples as anomalies in
this task.

• Thyroid. The Thyroid dataset is a disease dataset in which "neg-
ative" samples are treated as normal and others are anomalies. 7
continuous and 2 categorical relevant features are used in this



KDD ’21, August 15, 2021, Virtual

Table 2: Experiment results of our framework and the baseline methods for four static datasets

Methods KDDCUP Thyroid MoCap UJIIndoorLoc
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

DAGMM 0.830 0.839 0.835 0.273 0.257 0.265 0.431 1 0.603 0.720 0.709 0.714
AE-LOF 0.456 0.461 0.458 0.269 0.507 0.351 0.122 0.283 0.171 0.067 0.264 0.107
LOF - - - 0.248 0.467 0.324 0.123 0.286 0.172 0.134 0.528 0.214
IF 0.449 0.454 0.451 0.280 0.526 0.365 0 0 0 0.508 0.998 0.673
OC-SVM - - - 0.331 0.340 0.335 0.001 0.002 0.001 - - -
VAE-DN 0.852 0.954 0.9 0.268 0.345 0.302 0.256 0.522 0.344 0.112 0.701 0.211
CSCAD(no σ ) 0.734 1 0.846 0.440 0.586 0.503 0.557 0.684 0.614 0.059 1 0.112
CSCAD(7.5%) 0.857 0.994 0.920 0.496 0.795 0.611 0.486 0.991 0.652 0.924 0.856 0.889
CSCAD(5%) 0.862 0.921 0.890 0.480 0.662 0.557 0.496 0.956 0.653 0.916 0.858 0.886
CSCAD(2.5%) 0.881 0.996 0.934 0.495 0.553 0.522 0.507 0.792 0.618 0.706 0.894 0.789

task. Again, the categorical features are encoded using one-hot
encoding.

• MoCap. The MoCap dataset consists of 36 continuous features.
Representing the hand postures by 12 measuring points in the
three-dimensional space. Here, we consider the hand posture "5"
as anomalies and "1" as normal samples.

• UJIIndoorLoc. The UJIIndoorLoc is a multi-building indoor lo-
calization dataset containing 522 WiFi fingerprints as attributes.
We consider "BUILDING ID" labeled "2" as normal samples and
"0" as anomaly.

• Heterogeneity. The Heterogeneity is a human activity recog-
nition dataset which contains records of gyro sensor and ac-
celerometer from smartphones and smartwatches, including 6
continuous time-series features. We consider "Stand" activities
as normal samples, and "Stair Up" activities as anomalies.

4.2 Baseline
We consider several state-of-the-art deep learning approaches and
a few widely used methods as baselines:
• DAGMM. The deep autoencodingGaussianmixturemodel (DAGMM)
[31] uses latent low-dimensional representation and a Gaussian
mixture model to perform density estimation of data, and further
predict anomalies using a predetermined threshold.

• LOF. The local outlier factor (LOF) [6] finds anomalous data
points by measuring the local deviation of a given data point
with respect to its neighbors.

• AE-LOF. This method adopts a two-step approach. It first trains a
deep autoencoder to generate a latent representation of a sample,
then uses LOF to detect the anomaly.

• IF. Isolation Forest (IF) [20] is a decision tree-based ensemble
method. It partitions the sample points by randomly selecting
a split value between the maximum and minimum values of a
feature. Anomalies are more easily separated under random splits.
This baseline is also used in the experiment on time-series data.

• OC-SVM. One-class support vector machine (OC-SVM) [9] is a
kernel-based method which learns a decision function between
normal and anomalous samples.

• VAE-DN. This is a variant of the proposed CSCAD framework,
which uses VAE as the reconstruction network without consider-
ing the feature space correlation.

• CSCAD(no σ ). This variant of the proposed framework only
uses the reconstruction loss d in the discriminating network,
without considering the latent standard deviation vector σz .

• CSCAD(p%). Thesemodels are the proposed framework of which
the discriminating network is trained by selecting different per-
centages (i.e. 2.5%, 5%, 7.5%, smaller than the actual anomaly
ratio) of high anomalous degree samples as negative samples.

• Baselines for time-series data. We consider two baselines in
addition to IF, which are AE(LSTM)-IF and VAE+DN(LSTM).
AE(LSTM)-IF introduces LSTM layer in the autoencoder, and
uses IF to perform detection on the encoded representation.
VAE+DN(LSTM) is a variant of the time-series extension of CSCAD,
which removes GCN layers in the reconstruction network.

4.3 Model Configurations
The detailed model configurations used on each individual datasets
are summarized below. Letm be the dimension of data features.

• Reconstruction Network. For all datasets, the reconstruction
network runs with GCN(m, k=2, ReLU)-FC(m, 60, ReLU)-FC(60,
30, ReLU)-FC(30, 10, ReLU)-2 FC(10, 5, none)-reparameterize-
FC(5, 10, ReLU)-FC(10, 30, ReLU)-FC(30, 60, ReLU)-FC(60, m,
ReLU)-GCN(m, k=2, none).

• Discriminating Network. The discriminating network con-
tains 2 compression sub-networks that encode d and σz . The
outputs of the two compression sub-networks are concatenated
and fed into a sub-discriminating network to output the final
anomalous probability of a sample. For all datasets, the compres-
sion sub-network that encodes the d runs with BN(m, elu)-FC(m,
m/2, elu)-FC(m/2,m/4, elu)-FC(m/4, 10, elu)-FC(10, 5, elu); and
the compression sub-network for σz runs with BN(m, elu)-FC(m,
m/2, elu)-FC(m/2, 2, elu). Finally, the sub-discriminating network
runs with BN(7, elu)-FC(7, 4, elu)-FC(4, 2, softmax).

4.4 Result
Detection accrancy. Table 2 presents the precision, recall and

F1 score of the baseline methods and our proposed framework
for different datasets. It is shown that CSCAD demonstrates supe-
rior performance over all the baseline methods. Several baseline
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methods such as LOF and OC-SVM even failed within an accept-
able running time due to the large data size (e.g., KDDCUP, UJIn-
doorLoc). It is observed that even training by selecting only the
most conservative 2.5% high anomalous degree samples as neg-
ative samples, the proposed framework (CSCAD(2.5%)) achieves
10.2%, 15.7%, 1.5% and 7.5% improvement on F1 score on different
datasets over the best baseline methods (excluding VAE+DN and
other CSCAD variant models). Moreover, comparing the results
of CSCAD(2.5%, 5% and 7.5%), it is observed that conservatively
selecting a very small proportion (much smaller than the anomaly
ratio of the dataset) of high anomalous degree samples as negative
samples for training still enables the discriminating network to
maintain reasonable anomaly detection accuracy. This is important,
as in many real-world scenarios, the actual anomaly ratio in the
dataset is not known. It is desired to have a model that works with a
very conservative estimate of the anomaly ratio while still achieves
reasonable accuracy.

Several interesting observations can be made by analyzing the
results in Table 2. It is observed that considering feature space
correlation clearly improves anomaly detection accuracy. More
specifically, compared with the VAE-DN (without GCN to perform
correlation pattern filtering), the proposed framework achieved al-
most 30-60% improvement in terms of F1 score on Thyroid, MoCap
and UJIIndoorLoc datasets. This shows that considering feature
space correlation makes a significant improvement on the detec-
tion accuracy when data features have strong internal correlation
structure (e.g. interdependency of the physiological features under
disease for Thyroid dataset, the correlated relative movement of
the measuring points in the hand posture dataset MoCap and the
underlying pattern of the relative position of the WiFi fingerprint
signals in UJIIndoorLoc dataset.).

Impact of the generated anomalous degree measures. It is
found that the CSCAD consistently achieves higher F1 score com-
pared with the variant method CSCAD(no σ ) that does not consider
the latent standard deviation vector σz . This shows that consider-
ing only reconstruction loss may not fully reflect the anomalous
behavior of a sample. Incorporating the internal uncertainty level
information reflected in σz is also important. This observation is
also confirmed in Figure. 5, which presents the visualization of de-
tection results with respect to the L2-norms of reconstruction loss
d and latent standard deviation vector σz . It is observed that there
does not exist simple boundary values to separate the normal and
anomalous samples by solely inspecting d or σz . However, by joint
modeling both d and σz , we can learn a more robust discriminative
boundary to detect anomalies.

Table 3: Experiment results with limited anomaly label
available for KDDCUP dataset.

Labeled Rate Precision Recall F1

0% 0.881 0.996 0.934
0.50% 0.883 0.990 0.934
0.75% 0.883 0.997 0.936
1.00% 0.881 1 0.937

Results under semi-supervised settings. CSCAD can be eas-
ily adapted to semi-supervised or supervised settings by using
actual anomalous or normal samples in the positive and negative
sample set during training the discriminative network. We conduct
an experiment on the KDDCUP dataset to test the performance of
our framework when limited amount of anomaly labels are known.
Table 3 presents the results of CSCAD(2.5%) model when replacing
0% to 1% of the 2.5% high anomalous degree negative samples with
the actual anomalies. It is observed that with the introduction of
higher amount of labeled anomalies, the F1 score increases from
0.934 to 0.937. Even without labeled data, the framework trained
under unsupervised setting already achieved reasonable accuracy
(0.934), with only 0.003 decrease in F1 score compared with the case
introducing 1% of actual anomalies during training. This demon-
strates the robustness of the proposed framework.

Time-series extension. To demonstrate the extensibility of our
framework, we also present the experiment results on the time-
series dataset Heterogeneity in Table 4. We compare our frame-
work (CSCAD(LSTM)) with a classic method (IF) and two deep
learning-based approaches (AE(LSTM)-IF and VAE+DN(LSTM)).
Our framework outperforms all the baseline methods in terms of
precision, recall and F1 score. Compared with IF and AE(LSTM)-IF,
the proposed framework achieved 8-9% improvement on F1 score.
Again, we observe the feature space correlation helps to improve
detection accuracy, which accounts for 1.4% increase on F1 score
compared with the VAE-DN (LSTM) model. These results show the
effectiveness and extensibility of our framework.

Table 4: Experiment results of our framework and the base-
line methods for Heterogeneity dataset

Methods Heterogeneity
Precision Recall F1

IF 0.830 1 0.907
AE(LSTM)-IF 0.825 0.994 0.902

VAE+DN(LSTM) 0.953 1 0.976
CSCAD(LSTM) 0.980 1 0.990

5 CONCLUSION
We propose a new adaptive framework (CSCAD) for collective
anomaly detection for a large complex system with limited or
no anomaly labels. Unlike the state-of-the-art approaches so far,
CSCAD jointly considers the correlation structure in the feature
space and robust sample reconstruction, which leads to superior per-
formance in high-dimensional collective anomaly detection tasks.
In this framework, we propose a new EMImetric which is capable of
evaluating the correlation of data with different types (continuous
and categorical) and properties (static and time-series). A recon-
struction network is developed to perform sample reconstruction
and evaluates two natural anomalous degree measures of each sam-
ple: the reconstruction loss and the latent standard deviation. These
two anomalous degree measures serve as inputs to a discriminat-
ing network to perform final anomaly detection, which is trained
using high anomalous degree samples as positive samples, and
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(a) KDDCUP99 (b) MoCap (c) Thyroid (d) UJIndoorLoc

Figure 5: Visualization of the detection results with respect to norms of reconstruction loss d and latent standard deviation σz

low anomalous degree samples or samples with anomaly labels as
negative samples. This scheme allows the discriminating network
can be trained without a predetermined threshold and adaptable to
semi- or supervised settings, which is a perfect fit for many real-
world applications. Moreover, CSCAD is very flexible and can be
easily generalized to time-series collective anomaly detection tasks.
Numerical results on five public datasets show that our framework
consistently outperforms the baseline methods, which proves the
effectiveness of CSCAD.
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