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Abstract
Anomaly subgraph detection has been widely used in various do-

mains, ranging from epidemics, transportation to computer net-

works and social networks. Despite an increasing need to detect

anomaly on multiple networks due to complexity of real-world

data, only a limited number of works are available for this task.

Most existing methods focus on the anomaly detection on a single

attributed network or single domain’s multilayer networks, and

rarely analyze the correlation among anomalies from different lay-

ers. Anomaly detection on attributeless networks is also difficult.

Here we propose a novel method anomaly alignment across multiple
attributed networks (A3MAN), which introduces a representation-

based network alignment work to detect the correlated anomaly

subgraphs on multiple attributed networks and obtain their related

connections. Besides, A3MAN obtains the anomaly subgraph on an

attributeless network by detecting and aligning the anomalies of

multiple related attributed networks to the attributeless network.

We constructed two scenarios to validate A3MAN on two tasks

— related anomaly detection on multiple attributed networks and

anomaly detection on an attributeless network — using five real-

world datasets. In the real computer network scenario, we show that

A3MAN outperforms competitive methods by at least 11% accuracy

at 10% noise level and the number of related connections among

anomaly subgraphs are 13.6 times that of the competitive method

(63 times at 30% noise level). In the multi-type traffic scenario of

Tianjin, we reveal that the “Yingfengdao” subway station located

in the center of the “Nankai University Town” is the peak location

of the bicycle-sharing and car-hailing region.
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Figure 1: Related abnormal passenger flow itineraries with
similar structures detected by A3MAN across three traffic
datasets (Car-hailing & Bicycle-sharing & Subway). Within
a certain period, different types of traffic usually show sim-
ilar abnormal patterns, and are highly correlated in geo-
graphic attributes and specific locations. A3MAN detected
their correlated abnormal structures (yellow shades) and re-
lated links (blue lines) by detecting and aligning the abnor-
malities of their itinerary networks.

1 Introduction
The problem of anomaly detection has recently attracted much

more attention. Many methods have been proposed to spot anom-

alies in different scenarios, such as disease outbreak detection in

https://doi.org/10.1145/1122445.1122456
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Figure 2: Illustration of A3MAN. The subgraphs within solid black line freeform shapes are the largest anomaly subgraphs
(i.e., max 𝐹𝛼 ), and the yellow shaded subgraphs represent the aligned subgraphs (i.e., max𝑄𝜎 ). The red solid and blue dotted
lines connect anomaly subgraphs that meet the alignment conditions. The vertex values and red edge weights are empirical
p-values and alignment probabilities.

health alert networks, traffic jam detection in road networks, and

event detection in social networks [12, 18, 19, 22, 24]. Most of

these works are applied in a single network and cannot handle

graph
1
anomalies across multiple networks or multiple datasets.

Recently, several papers have mentioned anomaly detection on mul-

tiple networks[4, 21]. They focused on anomalies with the same

anomaly characteristics on multiple attributed networks in a spe-

cific field, and improved the accuracy of the overall anomaly detec-

tion. However, no further exploration has been carried out on the

correlation among anomalies from different networks. For example,

ADOMS[4] focuses on multi-layer social networks, and uses hierar-

chical information to assist the overall abnormal ranking of nodes,

which lacks analyses of the correlation among abnormalities from

different social networks. A3MAN pays attention to the anomalies

of multiple networks and their correlations in various fields. As

Figure 1, in the multi-type traffic scenarios, not only the correlated

abnormal itineraries from different networks can be detected but

also the correspondence among their related locations (Dormitory

B in 𝑆1, University B in 𝑆2 and Zhigu in 𝑆3).

Anomaly detection on the attributeless network is also difficult.

The latest work ASD-FT[20] introduces a related attributed network

and alignment method to transfer anomalous features to obtain

the abnormal information of the attributeless network. ASD-FT

focuses on two networks, has not introduced multiple related net-

works, and relies on spectral method for alignment, which will

be difficult to apply to multiple networks. A3MAN introduces a

representation-based alignment method, which can use sufficient

complementary information from multiple networks to obtain a

more comprehensive anomalies and their correlation (As Table 4’s

𝐴𝑐ℎ𝑜𝑟_𝑐𝑜𝑢𝑛𝑡 , A3MAN detected more related abnormal IPs).

Anomaly alignment acrossmultiple attributed networks (A3MAN),

by alternately performing two steps of anomaly detection and anom-

aly alignment, to obtain correlated anomaly subgraphs and their

1
In this paper, we use ‘graph’ and ‘network’ interchangeably, and ‘vertex’ and ‘node’

interchangeably, and ‘attribute’ and ‘feature’ interchangeably.

related links among multiple networks. Taking Figure1 as an ex-

ample, we first detect the optimal anomaly subgraphs on the three

networks and then align them to get the most correlated parts (yel-

low shades) with related links. The anomaly subgraphs (𝑆1,𝑆2,𝑆3)

present anomaly human activity subgraphs in one city. We can

observe that the “the largest passenger flow” subway station net-

work aligning with “the most car-hailing and bicycle-sharing orders”,
which means that most people arrive or leave at a subway stations

with transfer to bicycle or car at the certain relevant location. We

define the problem of anomaly alignment across multiple attributed

networks as:

max 𝐹𝛼 (S) +𝑄𝜎 (S) 𝑠 .𝑡 . S ⊆ G (1)

Where G = {𝐺𝑖 } is an attributed graph set, the graph index 𝑖 ∈
{1, · · · , 𝑁 }. S = {𝑆𝑖 } is a set of subgraphs. Each subgraph 𝑆𝑖 is

connected, whose vertices and edges belong to 𝐺𝑖 [24] . 𝐹 is the

abnormal score of S (e.g., the work TSPSD [24] as 𝐹 ).𝑄 is the align-

ment score of S (e.g., the work CrossMNA[6] as𝑄). The parameters

𝛼 and 𝜎 are significant level and alignment threshold respectively.

Our proposed method A3MAN consists of the main steps: 1)

for each attributed 𝐺𝑖 , detect its largest anomaly subgraph, and

combine with the previous results to get a new subgraph 𝑆∗
𝑖
; 2) align

all 𝑆∗
𝑖
to obtain the aligned anomaly subgraph 𝑆𝑖+1 of each network;

3) consider the nodes of 𝑆𝑖+1 as normal nodes in next step to avoid

repeated anomaly detection; and 4) when no update on 𝑆𝑖+1, and
return the optimal anomaly subgraphs. We have conducted our

method on five real datasets and demonstrate the effectiveness of

our method. We summarize our main contributions as follows:

1) Innovative work. A3MAN is a pioneer work in detecting

associated anomaly subgraphs on multiple attributed networks and

provides a method to detect anomalies on the attributeless network.

2) Effectiveness and robustness. Extensive experiments on

real datasets have verified that A3MAN can be effectively applied

to different multi-network scenarios. On the real computer net-

work dataset, our method achieves 97% accuracy at the ten percent

noise level, which is 11% higher than the best competitive baseline.
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Table 1: Representative symbols

Symbol Description

𝐺𝑖
𝐺𝑖 = {𝑉𝑖 , 𝐸𝑖 , 𝑃𝑖 },
The i-th network with anomaly feature

𝑉𝑖 The vertex set of 𝐺𝑖

𝐸𝑖 The edge set of 𝐺𝑖

p Mapping function to get anomaly features

𝑃𝑖 The anomaly feature set of 𝐺𝑖

𝑆𝑖 The anomaly subgraph of 𝐺𝑖

𝑉𝑆𝑖 The vertex set of 𝑆𝑖

𝐸𝑆𝑖 The edge set of 𝑆𝑖

1𝑆𝑖
1 ∈ {1} |𝑉𝑖 | ,
(1𝑆𝑖 )𝑣 ← 1 if 𝑣 ∈ 𝑉𝑆𝑖 , (1𝑆𝑖 )𝑣 ← 0 otherwise

𝐴𝑖 𝑗 the set of anchor links between 𝑆𝑖 and 𝑆 𝑗 , 𝑖 ≠ 𝑗

Besides, our algorithm performs better than all baselines under

different noise levels.

3) Comprehensiveness. Our method can detect anomaly sub-

graphs on the attributeless network because of the introduction

of multiple related attributed networks. The information among

multiple networks is complementary, so the detection results are

more comprehensive. On the real computer network dataset, the

anchor links in anomalies are 13.6 times that of the competitive

method at ten percent noise level (63 times at thirty percent noise

level).

Reproducibility: Our code is publicly available (anonymously) at

https://github.com/joyce-hehe/A3MAN.

2 Related work
Our work is related to anomaly detection and network alignment.

Here we briefly review these two aspects of work.

2.1 Anomaly detection
Anomaly detection has always been the focus of attention. Point

anomalies only assign outliers to nodes, which can be regarded as

a binary 0/1 classification problem [1], and there is no connection

between the detected abnormal nodes. However, with the expan-

sion of anomaly detection in the field of graphics and the needs of

actual scenes, abnormal nodes usually need to be displayed as con-

nected subgraphs. On the other hand, the discovery of anomalies

is often inseparable from statistical data. Compared with tradi-

tional parameterized scanning statistics (Kulldorff statistical data

[12]), nonparametric graph scan statistics (NPGS) can be applied to

heterogeneous graph data because it is free of distribution assump-

tion. Therefore, many NPGS-based abnormal connected subgraph

detection algorithms were born in combination with actual sce-

narios and performance requirements. They can be divided into

exact algorithms [18, 22] and approximate algorithms [5, 19, 24].

Among them,Wu[24] proved that anomaly subgraph detection is an

NP-hard problem, and proposed TSPSD based on dynamic program-

ming. The algorithm approximates the graph to a tree topology and

can be used for the large-scale dataset. Most of these algorithms

are used in single network, and only a few are used in multi-layer

network scenarios [4, 7], and they are all used to identify abnormal

nodes, not subgraphs. To the best of our knowledge, the latest work

used to detect multiple networks’ anomaly subgraphs is ASD-FT

[20]. It detects anomaly subgraphs of the graph based on anomaly

features of another graph. It introduces network alignment to cap-

ture anomaly features’ transmission by inferring the basic edges

between multiple entity networks. However, it is suitable for two

network scenarios, which is different from our work.

2.2 Network alignment
Network alignment is the basic problem of cross-network mining,

and many papers have proposed solutions. Most of them are based

on attributes and structure. Traditional methods [17, 23] mostly use

entity tag information to achieve alignment, such as user nicknames

in social networks and entity names in knowledge graphs. Manually

defining features is another method [2]. This method needs to care-

fully design features manually for specific problems, and it is not

easy to migrate to other scenarios. Most of the above two types of

methods only consider attribute information, while some methods

consider both network structure and attribute information (COS-

NET [28], HYDRA [16], REGAL [10]). They want to complement

the network structure and attribute information to achieve a bet-

ter alignment effect. In addition, because the attribute information

may be falsely fabricated or lost or hidden due to privacy, there are

many alignment algorithms based only on structural information

(BigAlign [11], UMA [27], IONE [15], CrossMNA [6]). Among them,

UMA, REGAL, and CrossMNA can be applied to multiple network

scenarios. Nevertheless, UMA and REGAL follow the assumption of

topological consistency and cannot handle networks with different

structures. However, CrossMNA does not follow topological consis-

tency and can learn a common structure across network diversity.

By integrating information from different networks, enhances the

effect of embedding and effectively reduces space overhead, so it is

suitable for large-scale multi-network scenarios.

Our work is based on the TSPSD and CrossMNA algorithms.

Compared with the existing work, we are innovative and superior

to the baselines in terms of efficiency and comprehensiveness.

3 Problem definition
Definition1 (Multiple Attributed Networks). Given an attrib-

uted graph set G = {𝐺𝑖 }, where the graph index 𝑖 ∈ {1, · · · , 𝑁 }.
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝑃𝑖 ) denotes the 𝑖-th graph, 𝑉𝑖 = {𝑣1, · · · , 𝑣𝑛}, 𝐸𝑖 ⊆
𝑉𝑖 ×𝑉𝑖 are sets of vertices and edges in 𝐺𝑖 , and 𝑃𝑖 is the anomaly

feature set of 𝐺𝑖 . 𝑁 is the number of graphs. 𝑃𝑖 obtained by the

mapping function p : 𝑉𝑖 → [0, 1] defines a single empirical p-value

corresponding to each node 𝑣 ∈ 𝑉𝑖 [24], the smaller the p-value,

the more abnormal the node. For the attributeless graph, we set

the p-values of all its nodes to 1. We use P,V,E to represent the

{𝑃𝑖 }, {𝑉𝑖 }, {𝐸𝑖 } of all graphs. We define an anchor link between

𝐺𝑖 and 𝐺 𝑗 as (𝑣𝑖𝑘 , 𝑣
𝑗

𝑘
), where 𝑣𝑖

𝑘
∈ 𝑉𝑖 , 𝑣 𝑗𝑘 ∈ 𝑉𝑗 . Anchor links have

transitivity property in networks [27].

Definition 2 (Subgraph). We denote 𝑆𝑖 ⊆ 𝐺𝑖 as subgraph

whose vertices and edges are subset of𝐺𝑖 . We write 𝑉𝑆𝑖 , 𝐸𝑆𝑖 as the

vertex set and edge set of 𝑆𝑖 , respectively. Similar to G, we define

S = {𝑆𝑖 }. Besides, we define 1 and 1𝑆𝑖 . Among them, 1 ∈ {1} |𝑉𝑖 |
, where |𝑉𝑖 | is the number of vertices in 𝐺𝑖 . 1𝑆𝑖 means that the
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Algorithm 1 A3MAN

Input: G = (𝐺𝑖 ), 𝑖 ∈ {1, · · · , 𝑁 }, G’s Anomalous feature set P,
significant level 𝛼 and alignment threshold 𝜎

Output: The set of aligned anomaly subgraphs S and the set of

S’s anchor links A
1: Initiate variables S0 = ∅, P0 = P, 𝑡 = 0

2: while S𝑡 ≠ S𝑡+1 do
3: S∗ ← argmax(𝐹𝛼 (S ∪ S𝑡 )), for S ⊆ G
4: S𝑡+1 ← argmax(𝑄𝜎 (S

′)), for S′ ⊆ S∗
5: P𝑡+1 ← P𝑡 ∪ 1S𝑡+1
6: 𝑡 = 𝑡 + 1
7: end while
8: return ˆS = S𝑡

corresponding value of 𝑣 ∈ 𝑉𝑆𝑖 in 1 is set to 1, otherwise it is set

to 0, that is, (1𝑆𝑖 )𝑣 ← 1 if 𝑣 ∈ 𝑉𝑆𝑖 , (1𝑆𝑖 )𝑣 ← 0, otherwise. We use

1S to summarize all 1𝑆𝑖 . We define 𝐴𝑖 𝑗 as the set of anchor links

between 𝑆𝑖 and 𝑆 𝑗 , 𝑖 ≠ 𝑗 , and use A to represent all 𝐴𝑖 𝑗 .

This paper aims to detect the aligned anomaly subgraphs among

multiple attributed networks to discover the correlation among

abnormal patterns. For the obtained anomaly subgraph 𝑆𝑖 , we need

to evaluate its anomaly score and its alignment score. Therefore,

we call this problem “Anomaly Alignment Across Multiple Attributed
Networks" (A3MAN), and its objective function is defined as follows:

ˆS = argmax

S⊆G
(𝐹𝛼 (S) +𝑄𝜎 (S)) (2)

where it is the general form of problem (1). The anomaly subgraph
ˆS

is the optimal solution, andL = 𝐹𝛼 ( ˆS)+𝑄𝜎 ( ˆS) is the corresponding
score. The problem (2) has the following three intuitive properties:

• (P1) F is monotonically increased with the number of ab-

normal nodes in 𝑆𝑖 .

• (P2) F is monotonically decreased with the number of nor-

mal nodes in 𝑆𝑖 .

• (P3) Q is monotonically increased with the number of node

pairs aligned between 𝑆𝑖 and 𝑆 𝑗 .

These properties follow naturally because P1-P2 are widely used in

connected anomaly subgraph detection [5, 24], and the possibility

of same anomaly increases with aligned links (P3).

4 Methodology
To optimize the problem of Anomaly Alignment Across Multiple
Attributed Networks, we propose the algorithm A3MAN, which

combines two aspects of anomaly subgraph detection and network

alignment. The A3MANmethod is illustrated in Figure 2, and shows

in Algorithm 1. The input of A3MAN is the edge set and anom-

aly feature set of multiple attributed networks, and the output is

the aligned anomaly subgraphs. Besides, A3MAN needs to pre-set

significant level 𝛼 (e.g., 0.15) and alignment threshold 𝜎 (e.g., 0.6).

4.1 Detection of anomaly subgraphs
In order to obtain the anomaly score of each anomaly subgraph,

we employ the non-parametric graph scanning statistic 𝐹 as the

scoring function, and its form is defined as follows:

𝐹𝛼 (𝑆) = 𝜑 (𝛼, 𝑁𝛼 (𝑆), 𝑁 (𝑆)) . (3)

where 𝑆 is a set of connected vertices, that is, a subgraph, and 𝛼 is

the significant levelt (the smaller the 𝛼 , the higher the abnormal

threshold), 𝑁𝛼 (𝑆) is the number of anomaly vertices in 𝑆 whose

p-value is less than or equal to 𝛼 , and 𝑁 (𝑆) is the total number of

vertices in 𝑆 .

In this paper, A3MAN employs two non-parametric graph scan-

ning statistics as the score function (3): Berk-Jones (BJ) statistic [3]

and Higher Criticism (HC) statistic [9]. They are defined as follows:

𝜑𝐵𝐽 (𝛼, 𝑁𝛼 (𝑆), 𝑁 (𝑆)) = 𝑁 (𝑆) × 𝐾𝐿(
𝑁𝛼 (𝑆)
𝑁 (𝑆) , 𝛼), (4)

𝜑𝐻𝐶 (𝛼, 𝑁𝛼 (𝑆), 𝑁 (𝑆)) =
𝑁𝛼 (𝑆) − 𝑁 (𝑆)𝛼√
𝑁 (𝑆)𝛼 (1 − 𝛼)

. (5)

where KL is Kullback-Liebler divergence between the observed

and expected proportions of p-values less than 𝛼 , its formulation is

𝐾𝐿(𝑎, 𝑏) =
{
𝑎 log( 𝑎

𝑏
) + (1 − 𝑎)𝑙𝑜𝑔( 1−𝑎

1−𝑏 ), 𝑖 𝑓 𝑎 ≥ 𝑏
0, 𝑖 𝑓 𝑎 < 𝑏

(6)

We use non-parametric graph scanning statistics to specify the

abnormality of the subgraph as a numerical value and obtains an

overall abnormality score 𝐹𝛼 (S) =
∑
𝐹𝛼 (𝑆𝑖 ) by accumulating the

subgraph scores of each network.

4.2 Alignment of multiple anomaly subgraphs
In order to obtain the alignment score of each subgraph, we define

𝑄 as the following form:

𝑄𝜎 (𝑆) =
𝐻𝜎 (𝑆)
𝐻 (𝑆) (7)

where 𝑆 is an anomaly subgraph, and 𝜎 is the predefined alignment

threshold (the larger the 𝜎 , the higher the alignment threshold).

𝐻𝜎 (𝑆) is the number of aligning nodes in 𝑆 that have alignment

with other subgraph nodes, and the alignment probability is greater

than or equal to 𝜎 . 𝐻 (𝑆) is the number of all nodes in 𝑆 .

The node’s alignment probability is obtained through the net-

work alignment work CrossMNA [6]. Based on graph embedding,

it studies the multi-network alignment problem and can integrate

information from different networks to improve alignment perfor-

mance. By introducing this algorithm, we pre-align G and obtain

the alignment probabilities of all node pairs among networks.

We first use network alignment to map the similarity of anom-

aly subgraphs, and compute the overall alignment score 𝑄𝜎 (S) =∑
𝑄𝜎 (𝑆𝑖 ) by accumulating the alignment scores of each subgraph.

4.3 Update of anomaly feature set
In Algorithm 1, we improve S𝑡 at each iteration, in terms of de-

tecting new anomaly subgraphs. We need to exclude the previous

anomaly subgraph S𝑡 , and detect the new anomaly subgraph by

updating the anomaly feature set P of G. The specific operation is:

P𝑡+1 ← P𝑡 ∪ 1S𝑡+1 , the p-values of the nodes of S𝑡+1 are set to 1.

We set the anomaly subgraph S𝑡+1 as a normal subgraph, and

𝐹𝛼 will be maximized at the new anomaly subgraph in the next

iteration. The update operations of the anomaly feature set avoid

repeating detection of the same abnormal nodes.
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Table 2: Summary of Datasets

Dataset Division rule Time Graph Node Edge
property # property #

20140531-20140731 𝐺1

IP/website

2, 639 4, 203

20140801-20140930 𝐺2 1, 963 2, 887

Computer Time 20141001-20141131 𝐺3 2, 012 IP visited 3, 528

Network 20141201-20150131 𝐺4 2, 192 the website 3, 860

20150201-20150331 𝐺5 1, 330 2, 069

20150401-20150513 𝐺6 124, 089 165, 224

Car-Hailing

Traffic type

20191220 0:00-24:00 𝐶𝐻 itinerary 54, 962 the same 158, 674

Bicycle-Sharing 20191220 0:00-24:00 𝐵𝑆 start/end point 20, 858 itinerary 229, 816

SubWay (Metro) 20191220 0:00-24:00 𝑆𝑊 station 143 subway line 153

4.4 Theoretical Analysis
Time Complexity. A3MAN’s time complexity is 𝑂 (𝑘 (𝑁 |𝑉 |2 +
|𝑉 |𝑁 2), where 𝑘 is the number of iterations, 𝑁 is the number of

networks, |𝑉 | is the number of nodes in the network.

Derivation process: The time complexity of A3MAN is mainly

composed of two parts, namely the third step 𝐹𝛼 () and the fourth

step 𝑄𝜎 () of the algorithm1.

𝐹𝛼 () is an anomaly subgraph detection step based on NPGS,

and A3MAN introduces tree-priors-based NPGS method TSPSD to

achieve it. For a single attribute network, the algorithm can get the

best approximate solution, and the time complexity is𝑂 ( |𝑃 | |𝑉 |2/𝜖)
[24]. |𝑃 | is the number of feature types in the network anomaly fea-

ture set (features with the same numerical value are regarded as the

same type), |𝑉 | is the number of nodes, and 1+𝜖 is the approximate

factor. Since we pre-set the significant level 𝛼 in A3MAN, |𝑃 | here
is regarded as a constant in A3MAN. Then the time complexity of

𝐹𝛼 () is 𝑂 ( |𝑉 |2/𝜖)
𝑄𝜎 () is a subgraph alignment step based on network alignment.

In order to achieve this function, A3MAN introduces CrossMNA[6],

a multi-network alignment algorithm based on graph embedding, to

obtain the alignment probabilities of all node pairs among networks.

CrossMNA uses cross-network information to express the network

vector as a combination of two types of node embedding vectors,

i.e., inter-vector for network alignment and intra-vector for other

downstream network analysis tasks. Their respective dimensions

are d, d1, d2, and 𝑑2 ≪ 𝑑1 ≈ 𝑑 . The time complexity of CrossMNA

is approximately 𝑂 (𝑡𝑁 (𝑑1𝑑2|𝑉 | + 𝑑2|𝐸 |)), where t is the number

of iterations of CrossMNA, N denotes the number of networks, and

|𝑉 |, |𝐸 | denote the number of nodes and edges in each network

respectively. In addition, we use a dictionary to store the alignment

probability between node pairs in practical applications, so the

search time complexity of each iteration of 𝑄𝜎 () is 𝑂 ( |𝑉 |𝑁 2).
In summary, the time complexity of A3MAN is (𝑘 (𝑁 |𝑉 |2/𝜖

+|𝑉 |𝑁 2)+𝑡𝑁 (𝑑1𝑑2|𝑉 |+𝑑2|𝐸 |),𝑁 ≪ |𝑉 |, expressed as𝑂 (𝑘 (𝑁 |𝑉 |2+
|𝑉 |𝑁 2), where 𝑘 is the number of iterations, 𝑁 is the number of

networks, and |𝑉 | is the number of nodes of a network.

Theorem 4.1. Convergence andOptimality ofA3MAN. Within
the pre-aligned domain (integrates the alignment probability infor-
mation of all node pairs between the networks obtained by network
alignment work), Algorithm 1 converges to the optimal solution of
the problem (2).

Proof. We use the contradiction method to prove Theorem 4.1.

Suppose the output of Algorithm 1:
ˆS = (𝑆1, 𝑆2, · · · , 𝑆𝑖 , · · · , 𝑆 𝑗 , · · · ,

𝑆𝑁 ) is not the global optimal solution. So there is at least one pair

nodes (𝑣𝑖
𝑘
, 𝑣

𝑗

𝑘
) between𝐺𝑖 and𝐺 𝑗 , which satisfies the condition that

𝑣𝑖
𝑘
∉ 𝑆𝑖 but connect with 𝑆𝑖 , 𝑣

𝑗

𝑘
∉ 𝑆 𝑗 but connect with 𝑆 𝑗 , 𝑝 (𝑣𝑖𝑘 ) ≤ 𝛼

, 𝑝 (𝑣 𝑗
𝑘
) ≤ 𝛼 , and the alignment probability of (𝑣𝑖

𝑘
, 𝑣

𝑗

𝑘
) > 𝜎 . Let

𝑆 ′
𝑖
= 𝑆𝑖 ∪{𝑣𝑖𝑘 }, 𝑆

′
𝑗
= 𝑆 𝑗 ∪{𝑣 𝑗𝑘 }, ˆS

′ = (𝑆1, 𝑆2, · · · , 𝑆 ′𝑖 , · · · , 𝑆
′
𝑗
, · · · , 𝑆𝑁 ),

then 𝑁𝛼 ( ˆS′) > 𝑁𝛼 ( ˆS), 𝑃𝜎 ( ˆS′) > 𝑃𝜎 ( ˆS) are held. According by

properties ofL, the value ofL corresponding to
ˆS′ is greater than ˆS.

Therefore,L of
ˆS is not themaximum value that is inconsistent with

equation (2). So this inference is contradicted by the assumption.

□

By the theorem, our algorithm guarantees on detecting the most

anomaly subgraphs on multiple attributed networks.

5 EXPERIMENTS
In this section, we performed a series of experiments to verify

A3MAN. We applied the algorithm to two actual scenarios and

verified the effectiveness of the algorithm through ground truth.

We compared it with three competitive baselines.

5.1 Datasets
We constructed two multi-network scenarios (Table 2) based on

the following four real datasets: Computer network, Car-hailing

& Bicycle-sharing & Subway (Metro). Moreover, we introduce POI

(Point of Interest) dataset as the ground truth of the second scene.

(1) Computer network: An Internet company provided brows-

ing logs from the *edu.cn websites, which involved a total of 996

websites, 131, 205 IPs, and the time range was from May 31, 2014

to May 13, 2015, with a total of 3, 978, 073 logs. In this time range,

for a certain website/IP on the t-th day, we take the number of logs

related to that website/IP on the t-th day as the observed value 𝑐𝑡 .

By comparing 𝑐𝑡 with the daily 𝑐𝑖 , (𝑖 < 𝑡) of the website/IP before

the t-th day, the empirical p-value of the website/IP on the t-th day

is obtained. Therefore, for all websites/IPs involved in the daily

log, we have their corresponding p-value snapshots. We divided

these logs into six parts, each containing two months of data, and

constructed six computer networks based on this.

(2) Car-hailing: This dataset includes 58, 674 online car-hailing
orders in Tianjin on December 20, 2019. Each record contains the

time of the order and the start and end of the itinerary.We processed
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Table 3: Comparison of detecting abnormalities on multiple attributed computer networks.

Algorithms noise Recall Precision F1 Acc TPR FNR
A3MAN (BJ) 0 1.00 0.99 1.00 0.99 1.00 0
A3MAN (BJ) 10 0.97 0.99 0.98 0.97 0.97 0.03
A3MAN (BJ) 30 0.94 0.97 0.95 0.91 0.94 0.06

ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]

0
10
30

0.94
0.93
0.93

0.94
0.93
0.93

0.94
0.92
0.93

0.89
0.86
0.85

0.94
0.92
0.93

0.06
0.08
0.07

TSPSD (BJ)[2018]
TSPSD (BJ)[2018]  
TSPSD (BJ)[2018]

0
10
30

0.96
0.86
0.70

0.95
0.97
0.95

0.97
0.92
0.81

0.95
0.86
0.69

0.96
0.86
0.70

0.04
0.14
0.30

NPHGS (BJ)[2014]
NPHGS (BJ)[2014]  
NPHGS (BJ)[2014]

0
10
30

0.91
0.82
0.69

0.97
0.95
0.93

0.93
0.88
0.79

0.89
0.80
0.64

0.90
0.82
0.69

0.10
0.18
0.31

Table 4: Comparison of detecting abnormalities on attributeless computer network

Algorithms noise Anchor_Count TPR
 (prediction)

FNR 
(prediction)

A3MAN (BJ) 0 1,012 0.98 0.02
A3MAN (BJ) 10 1,011 0.95 0.05
A3MAN (BJ) 30 1,010 0.93 0.07

ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]

0
10
30

115
74
16

0.94
0.88
0.86

0.06
0.12
0.14

a Higher Criticism (HC) statistic results are the same as BJ.

(a)  Recall (b)  FNR (c) Anchor_Count (d) TPR(prediction)

Table 3: Comparison of Metric A of algorithms on the computer network dataset

Algorithms noise Recall Precision F1 Acc TPR FNR
A3MAN (BJ) 0 1.00 0.99 1.00 0.99 1.00 0
A3MAN (BJ) 10 0.97 0.99 0.98 0.97 0.97 0.03
A3MAN (BJ) 30 0.94 0.97 0.95 0.91 0.94 0.06

ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]

0
10
30

0.94
0.93
0.93

0.94
0.93
0.93

0.94
0.92
0.93

0.89
0.86
0.85

0.94
0.92
0.93

0.06
0.08
0.07

TSPSD (BJ)[2016]
TSPSD (BJ)[2016]  
TSPSD (BJ)[2016]

0
10
30

0.96
0.86
0.70

0.95
0.97
0.95

0.97
0.92
0.81

0.95
0.86
0.69

0.96
0.86
0.70

0.04
0.14
0.30

NPHGS (BJ)[2014]
NPHGS (BJ)[2014]  
NPHGS (BJ)[2014]

0
10
30

0.91
0.82
0.69

0.97
0.95
0.93

0.93
0.88
0.79

0.89
0.80
0.64

0.90
0.82
0.69

0.10
0.18
0.31

Table 4: Comparison of Metric B of algorithms on the computer network dataset

Algorithms noise Anchor_Count TPR
 (prediction)

FNR 
(prediction)

A3MAN (BJ) 0 1,012 0.98 0.02
A3MAN (BJ) 10 1,011 0.95 0.05
A3MAN (BJ) 30 1,010 0.93 0.07

ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]
ASD-FT (BJ)[2020]

0
10
30

115
74
16

0.94
0.88
0.86

0.06
0.12
0.14

a Higher Criticism (HC) statistic results are the same as BJ.

(a)  Recall (b)  FNR (c) Anchor_Count (d) TPR(prediction)

Figure 3: Effect of noise (noise level = 0%, 2%, 5%, 10%, 30%) on Recall, FNR, Anchor_Count and TPR (prediction) of algorithms
on the computer network dataset, A3MAN achieves the best performance.

the dataset as follows: First, we divide the dataset into 24 parts

according to the time (hours). For hourly data, we used the start

point and endpoint of the itinerary as a node in the network and

regarded the start point and endpoint of an itinerary is connected

so that we can obtain the corresponding itinerary network of this

hour. For the node 𝑣 in the itinerary network of the hour 𝑡 , we

regard the number of times the node 𝑣 is used as the start point

or the endpoint in the hour 𝑡 as the observed value 𝑐𝑡 , and regard

observed values 𝑐𝑖 , (𝑖 ≠ 𝑡) of 𝑣 in other hours as compared values,

the empirical p-value of 𝑣 at hour 𝑡 can be obtained. As a result, we

obtained 24 car-hailing itinerary networks.

(3)Bicycle-sharing: This dataset includes 229,814 bicycle-sharing
orders in Tianjin on December 20, 2019. Each order contains time,

start location, and end location. We perform the same processing

on this dataset as the car-hailing dataset.

(4) Subway: This dataset includes subway traffic data in Tianjin

on December 20, 2019. The data recorded the hourly passenger flow

of 143 subway stations in Tianjin that day, totaling 3,432. According

to the Tianjin subway route, connections are established between

interconnected subway stations to form a subway network with

143 nodes and 153 edges. For the subway station 𝑠 at hour 𝑡 , we

regard the passenger flow of 𝑠 in that hour as the observed value 𝑐𝑡 .

Next, perform the same processing as the car-hailing dataset. As a

result, we obtained 24 subway networks.

(5) POI: This dataset comes from Baidu Maps, recording the

information of 242,189 interest points in Tianjin. Each message

contains the name, location, telephone number, longitude, latitude,

id, and keyword. This dataset can map the longitude and latitude in-

formation of the Car-hailing, Bicycle-sharing, and Subway datasets

to specific locations, thereby obtaining more realistic results.

5.2 Methods.
To show the effectiveness of A3MAN in multi-network anomaly

mining, we compared it with the following baselines in experiments

on the computer network dataset. Below we will briefly introduce

these methods and their corresponding experimental settings.

Our method. We express Algorithm1 as anomaly alignment

across multiple attributed networks (A3MAN) and use BJ and HC

statistics to conduct experiments. The parameters to be set for

A3MAN include significant level 𝛼 and alignment threshold 𝜎 . In

the comparative experiment, we set 𝛼 = 0.15 and 𝜎 = 0.8.

Baselines. Anomaly subgraph detection algorithms:
1) NPHGS [5] is a method that considers the entire heteroge-

neous network for event detection: it first model the network as a

"sensor" network, in which each node senses its "neighborhood en-

vironment" and reports an empirical p-value measuring its current

level of anomalousness for each time interval (e.g., hour or day).

It efficiently maximizes the nonparametric scan statistic over con-

nected subgraphs to identify the most anomalous network clusters.

This method’s input is the edge set, node-set, and p-value set of a

single network, and the output is the largest anomaly subgraph of

the network. In the comparative experiment, we set the value of

the parameter 𝛼𝑚𝑎𝑥 and the number of seed entities K to 0.15 and

5 respectively. Execute the algorithm on each network, compare all

the anomaly subgraphs detected with the ground truth, and obtain

the corresponding evaluation metrics. 2) TSPSD [24] is also an

anomaly detection algorithm based on non-parametric scanning

statistics. It implements efficient anomaly sub-graph detection by

reformulating the problem as a series of Budget Price-Collecting

Steiner Tree (B-PCST) subproblems. The input of TSPSD is the

maximum connected subgraph of a single network and the set of

p-values of the network nodes, and the output is the maximum



Anomaly Alignment Across Multiple Attributed Networks ODD ’2021, Aug 15, 2021, Virtual

Figure 4: A set of related abnormal IPs detected by A3MAN across multiple networks. It was detected that the abnormal IPs in
the set have a certain correlation, they all attacked www.ch.zju.edu.cn, and mainly came from two network segments x.x.7.(58-
161) and x.x.196.(88-156). In addition, through records, it was found that the addresses of these IPs were all on the same province,
China, and the attack methods were all Nginx Attack.

anomaly subgraph of the network. In the experiment, we set the

anomaly parameter 𝛼𝑚𝑎𝑥 of TSPSD to 0.15, and by separately ex-

ecuting the TSPSD algorithm for each of the multiple networks,

we can get the result of the anomaly subgraph of each network.

Finally, we compare these results with the ground truth and get the

corresponding evaluation metrics of TSPSD.

Baselines. Anomaly Alignment algorithm:
ASD-FT [20] detects anomaly subgraphs of a graph lacking

anomaly features through anomaly features of another graph. It

captures the transmission of anomaly features by introducing net-

work alignment and inferring the underlying edges between entity

graphs. For the network𝐺1 with anomaly features and the network

𝐺2 without anomaly features, ASD-FT input includes their largest

connected subgraph, the set of anomaly features of 𝐺1, the known

anchor chain matrix between 𝐺1 and 𝐺2 and the significant level

𝛼 . To obtain anomalous results across multiple networks and com-

pare them with A3MAN, we set 𝛼 = 0.15 in the experiment. We

use ASD-FT to align the each anomaly subgraph 𝑆𝑖 of 𝐺𝑖 , 𝑖 ≠ 6 to

𝐺6, and aggregate them to obtain the anomaly subgraph 𝑆6 of 𝐺6,

so that we get the anomaly subgraphs of all networks. We get its

evaluation metrics by comparing the result with ground truth.

5.3 Metrics
We use Recall, Precision, F1, Acc (Accuracy rate), TPR (True
PositiveRate), FNR (FalseNegativeRate) to evaluate algorithms’

ability to detect the overall anomaly on multiple attributed net-

works, and use Anchor_Count,TPR (prediction), FNR (predic-
tion) to evaluate the algorithms’ ability to detect anomalies on

attributeless networks and discover related links among anomalies

across the network.

5.4 Experiment Results
We conduct comparative experiments on the computer network

dataset with ground truth data, set 𝛼 = 0.15, 𝜎 = 0.8. The experi-

mental results are shown in Table 3 and Table 4.

1) Ability to detect anomalies on multiple attributed net-
works: Taking all the attributed computer networks as the input

of A3MAN and getting the metrics in Table 3, it can be seen that

A3MAN outperforms all baselines. For Recall, F1 and TPR, our algo-

rithm reaches 1.00, which is better than all baselines. For Acc, we

can see that at ten percent noise level, our algorithm’s evaluation

index’s value is 0.97, which improves at least 11% than the competi-

tive methods. For FNR, we observed that A3MAN’s minimum value

is 0.00, which is much lower than all baselines, which fully proves

the effectiveness of A3MAN in detecting anomalies on multiple

attributed networks.

2)Ability to detect anomalies on the attributeless network:
By setting the p-values of all nodes in 𝐺6 to 1, it is regarded as a

network with missing features. Then run A3MAN to get the metrics

in Table4. For comparable TPR (prediction) and FNR (prediction),

the A3MAN algorithm reached 0.98 and 0.02, which is significantly

better than the two baselines. Moreover, compared with the ASD-FT

anomaly alignment algorithm, the total number of abnormal anchor

links obtained by our algorithm is 1, 012, which is 8.8 times the

115 of ASD-FT. These results mean that A3MAN has an excellent

performance in predicting anomalies.

3) Robustness: To evaluate the robustness of A3MAN, we ran-

domly flip the set of abnormal attribute values P of G, and make its

noise level reach 2%, 5%, 10%, and 30%. The experimental results are

shown in Figure 3. For Recall (Figure 3(a)), before the noise level

reaches 10%, our algorithm maintains at a level of about 98%. Even

if the noise level reaches 30%, it can be maintained at 94%, which

is better than all baselines. For FNR (Figure 3(b)), our algorithm

has the smallest index value, and the highest value is only 0.06. For

Anchor_Count (Figure 3(c)), the number of abnormal anchor links

detected by our algorithm is much higher than that of ASD-FT and

has been maintained at about 1010, showing stable performance. Be-

sides, when the noise level reaches 30%, this indicator even reaches

63 times the baseline. For the indicator TPR (prediction) (Figure
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Figure 5: Associated abnormal distribution of Car-hailing & Bicycle-sharing & Subway detected by A3MAN. At 8:00, 12:00 and
18:00 on December 15, 2019 (Friday), by using the A3MAN on the three traffic networks, we can get their aligned anomaly
subgraphs at different times. Where (a) is a heat map of the aligned abnormal distribution of the traffic networks. Each hot
spot represents an abnormal area, and the redder the color, the higher the abnormality of the area. The black lines indicate
that there are itineraries between the two areas, the dark blue text indicates the main position type of the start and end points
of the itineraries included in the area. (b) is a summary of the aligned abnormalities at three periods in (a). From the extracted
main aligned anomaly areas and itineraries, it can be seen that morning and evening traffic flow mainly comes from school
crowds, while at noon, it is mainly business crowds and tourists.

3(d)), A3MAN still performs better than the baseline, and when the

noise level reaches 30%, the performance exceeds baseline by 7%.

5.5 Case study in Computer network dataset
Run A3MAN on computer network dataset, input all networks, and

set 𝛼 = 0.15, 𝜎 = 0.8.

1) Discovery of related abnormal IP group: Our algorithm
can obtain the abnormal IP group and mine the hidden attacking

IP information (Figure 4). A3MAN can mine abnormal anchor links

across multi-layer networks through the network structure. By

summarizing the anchor nodes corresponding to these anchor links,

we can obtain an abnormal IP group. Although these IPs appear

in different periods, their attack behaviors are similar. Through

their log information, we found these IPs come from several fixed

network segments, and their attack methods and locations are also

the same, which means that these IPs may come from the same

attack source. Based on the information obtained, we can prevent

their attacks by intercepting IPs from these fixed segments.

2) Prediction of network attacks: We treat𝐺6 as an attribute-

less network by setting the p-value of all nodes in𝐺6 to 1 and use it

with other networks as the input of A3MAN to obtain its anomaly

subgraph 𝑆6. Regard 𝑆6 as the prediction result, which summarizes

the IPs that may attack the website during the period of 𝐺6. We

compare it with the real attacks that occurred during this period,

and get the TPR (prediction) and FNR (prediction) in Table 4. It

can be seen from the metrics that A3MAN can make reasonably

accurate predictions of future attacks. Our algorithm can detect the

abnormal situation of the target network through networks with

sufficient abnormal characteristics, even if the target network does

not have any abnormal information.

5.6 Case study in Traffic datasets
Run A3MAN on multiple networks composed of the car-hailing

itinerary network, the bicycle-sharing itinerary network, and the

subway (metro) network. The experiment aims to discover the

correlated anomalies of these three types of traffic networks in the

same period. Therefore, we selected three networks with the same

period (8:00/12:00/18:00) and set 𝛼 = 0.05, 𝜎 = 0.8.

1) Discovery of associated anomaly distribution and evo-
lution mode: From Figure5(a), it can be found that in the same

period, Car-hailing, Bicycle-Sharing, and Subway exhibited sim-

ilar anomaly distributions. Especially the first two, not only the

geographic location of the abnormal nodes but also the anomaly

magnitude and type of location all show consistency. For example,

at 8:00 and 18:00, Both of their main types of abnormal locations

were dormitories and educational institutions, while at noon were

attractions and companies. Meanwhile, if we only focus on one

traffic type, we find that its anomaly distribution results mined by
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A3MAN were similar in the morning and evening (Few abnormal

locations, Low abnormality) but different at noon (More abnormal

locations, Higher abnormal amplitude). The above results can show

that A3MAN can get the associated anomaly distribution and their

common anomaly evolution mode.

2) Real abnormal itinerary mining: From Figure 5(a), we

know that most of the orders for bicycle-sharing and car-hailing

were from A “Tianjin University”and B “Dieqiao Apartment” at

8:00. The passenger flow of the subway stations nearby was also

abnormal. Through the ground truth provided by the POI dataset,

we learned that “Tianjin University” is in “Nankai University Town”,

and the nearest subway station is “Yingfengdao”. People usually

transfer here through car-hailing and bicycle-sharing. “Dieqiao

Apartment” is located in the dormitory area. Most people here

go to different schools through “Fuxingmen”, get off at the sub-

way stations near the corresponding schools, and then transfer by

car-hailing and bicycle-sharing. This is why in the educational insti-

tutions around “Dieqiao Apartment”, the orders were also abnormal.

At noon, the peak orders appeared in C “Zhongxin Mansion” and

D “The Five Major Avenue Attraction”. “Zhongxin Mansion” is

located in “Xiqing Industrial Park”, where many people go home

through “Bianxing” station. Therefore, not only the passenger flow

of this station has peaked, but also the orders of car-hailing and

bicycle-sharing nearby. “The Five Major Avenue Attraction” is a

famous attraction. The nearest station is “Zhigu”, so the orders and

passenger flow here were abnormal. Besides, from the Figure 5(b)

we can intuitively see that at 8:00 and 18:00, the primary sources of

orders were educational institutions and dormitories, and at noon

they became companies and attractions. It can be inferred that the

traffic peaks in the morning and evening were mainly due to the

school crowds, while the business crowds and tourists at noon.

6 Conclusion
In this paper, we study the problem of anomaly alignment across

multiple attributed networks and propose a solution, A3MAN.

A3MAN introduces the network alignment method to the anomaly

subgraph detection, mines the correlation of anomalies among mul-

tiple attributed networks, and provides a way to detect anomalies

on attributeless networks. Extensive experiments show that the

algorithm is indeed useful and has better performance than other

current work. Future work will further improve the algorithm and

make it suitable for more practical scenarios in the economy field,

the agricultural field, and the social network field.
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