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ABSTRACT
Successful anomaly detection methods require making accurate
assumptions on the statistics of normal and anomalous data. Tabu-
lar anomaly detection is particularly challenging due to the great
diversity of distributions between different datasets. One class of
methods, combines multiple classifiers, each first linearly projecting
the sample features to a scalar and then estimating its probability
density in 1D. Departing from previous methods, our focus in this
work is to determine the optimal directions for projection. We first
identify that multimodality of the distribution affects the optimal
projection set. Our experiments show that for unimodal data, the
principal component directions are an effective choice, while for
multimodal data, the raw axes are better. We begin by proposing
a simple baseline of choosing the projection directions based on
whether the dataset is unimodal or multimodal. However, due to the
unsupervised setting, this strategy requires a reliable unsupervised
unimodality statistical test. To remove this requirement, we pro-
pose a more robust solution that does not require determining if the
data is unimodal. Our method, S-Chimera, uses a consensus-based
approach to select the best subset of projections from the combined
set of principal and raw axes. Our method is evaluated on a large
number of high-dimensional datasets and is shown to outperform
top established methods, as well as recent deep learning methods,
while being orders-of-magnitude faster. The results are demystified
through ample analyses.
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1 INTRODUCTION
Anomaly detection methods aim to identify unusual patterns in
data. As identifying what is ’usual’ and ’unusual’ is essentially a
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Figure 1: Average ROC-AUC vs. inference runtime: Our
method S-Chimera achieves the top average ROC-AUC over
the highest-dimensional ODDS datasets while having one of
the fastest inference speeds.

probabilistic task, a common approach is to estimate the proba-
bility density function (PDF) of normal data, and then score test
samples as normal or anomalous by thresholding the probability of
the sample. Samples that obtain low probability under the distribu-
tion of normal data are labelled as anomalous while those that are
deemed likely are labelled normal. Estimating high-dimensional
distributions is not an easy task, particularly under a limited num-
ber of training samples. Although non-parametric methods such
as K-nearest neighbors or KDE make relatively few assumptions,
they suffer from the "curse of dimensionality". Parametric methods
such as Mahalnobis or mixture-of-gaussians have lower sample
complexity, but make very strong assumptions on the distribution
which may not be satisfied in practice. In this paper, we concentrate
on a class of methods that tackles the more manageable task of
estimating the PDF of the data after linear projection to a scalar
along a set of pre-defined directions.

We present a framework that generalizes projection-based anom-
aly detection methods. This framework consists of four main parts:
(i) Composing a set of linear projection directions to 1D. (ii) Pro-
jecting the data. (iii) Estimating the 1D marginal probability dis-
tributions. (iv) Combining the marginal probabilities. We show
that popular existing methods - HBOS, LODA and Mahalanobis
correspond to special-cases of this framework.

Our focus in this work is to determine the optimal directions for
projection. This differs from previous work such as LODA that uses
random projection directions, which we show is suboptimal. We
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identified that the number of modes in the distribution of normal
data is critical to the choice of projections. One approach is to
tailor a dedicated projection set for unimodal distributions and a
dedicated projection set for multimodal distributions. In this paper
we show that given the knowledge that the distribution is unimodal,
principal component axes are an effective choice, while in case of
multimodal data, the raw axes are better. However, since we are
in an unsupervised setting, this approach requires a sufficiently
accurate unimodality statistical test. We considered three different
established tests, but they were not sufficiently accurate at detecting
if distributions are unimodal or multimodal. We therefore present
two new methods, which also follow this framework and obtain
strong performance without requiring prior knowledge of the data
distribution.

Our first method, Chimera1, detects anomalies by probability
estimation after projection to the principal and raw axes. It provides
a fast, robust and accuratemethod for detecting anomalies in tabular
data, and offers the advantage of making very few requirements
on the data statistics. After projecting the data onto principal and
original axes, themarginal distribution of each axis can be estimated
using a non-parametric histogram estimator. Lastly, the estimated
log probabilities from all projections are summed and the anomaly
score is determined.

Although Chimera obtains strong results, some of the projec-
tions that it uses actually degrade the performance. We present
our second method, S-Chimera, that select a subset of Chimera’s
set of projections (original and principal axes). S-Chimera uses the
idea that good projections make similar predictions (and there-
fore agree with the consensus) while poor projections result in
random prediction. S-Chimera requires having both normal and
anomalous samples in the training set, but it does not require labels
indicating which samples are normal and which are anomalous.
At inference time, both Chimera and S-Chimera first project the
sample on their projection set, and generate the anomaly score
by summing the log-probability of the sample according to the
individual projections. In our numerical experiments, it will be
shown that for high-dimensional data, S-Chimera achieves superior
results than more complex and much slower approaches such as
Isolation Forest, KNN ,Mahalanobis and LODA, as well as recent
deep learning-based approaches.

Our methods are simpler and more robust than previous meth-
ods, and achieve stronger results with nearly the fastest runtime.
We provide extensive analysis, explaining the differences between
Chimera, S-Chimera, and other top methods.

.

1.1 Related Work
In this section, we give a high-level overview of tabular anom-
aly detection methods. A deeper explanation of the most relevant
methods, is provided in Sec. 2.

Non-parametric methods: A large class of methods attempts
to estimate the probability distribution of data without making
parametric assumptions. One dominant line of work is based on
K nearest-neighbor (kNN) e.g. [3, 12, 18]. As kNN can be slow,
speeding it up by subsampling the training set was proposed by

1A chimera is a single organism that’s made up of cells from two or more "individuals"

[26]. In some datasets, the anomalies do not lie in regions that are of
low-density in relation to all data, but only in relation to their local
neighborhoods. This motivates local kNN methods such as LOF
[7]. In extensive comparisons by Goldstein and Uchida [10] it was
found that kNN outperforms LOF on most datasets, but there are
cases where LOF helps. Kernel Density Estimators (KDE) [21] are
related to kNN but results in explicitly probabilistic outputs. KDE
notoriously suffers from the curse of dimensionality, and therefore
has issues for high-dimensional data.

Histogram-basedmethods:Histograms are another way to es-
timate probability distributions. As histograms scale exponentially
with the data dimension, they can only be used in low dimensions.
HBOS [9] proposed to independently learn a histogram estimators
for the marginal distribution when projected to every axis. LODA
[17] further extended this idea to learn the probability density for
a set of random projection directions. Histogram-based methods
are efficient and achieve surprisingly good results. Our method
significantly improves over such methods. We will give a more
in-depth introduction to histogram-based methods in the Sec. 2.

PCA-based methods: Principal component analysis is a com-
monly used for learning the main directions of variation. A line of
anomaly detectors utilize this technique, and use the Mahalanobis
distance, which can be seen as a measure of the Euclidean distance
between samples after projection to the principal axes. Shyu et al.
[14] identify the contribution of each group of components, and
further propose to employ two functions of principal component
scores - from the major and from the minor components, such that
the major component are utilized to detect extreme observations
with large values on some original features, while the minor com-
ponents help to detect the observations that do not conform to the
normal correlation structure. PCA, however, has a major limitation,
by assuming that the mean and the variance entirely describe the
probability distribution. This requires the probability distribution
of the data to be a Gaussian.

Tree-based methods: Random forests [6] and boosted trees
[28] are very successful for classifying tabular data. Isolation forest
(IF) [15] is a leading method for anomaly detection. The method
consists of a set of isolation trees, each tree classifies the sample
into a progressive set of nodes. Some nodes have high density
while others have low density. Samples that are classified into low
density nodes that occurs after only a few splits are considered
anomalous. IF is an ensemble method aggregating the results over
many randomly generated trees.

Classification-based methods: Instead of attempting to esti-
mate the probability density of normal data, classification methods
attempt to directly learn a classifier that discriminates between
normal and anomalous data. This is hard as we have no labeled ex-
amples. One class classification (OCC) tackles this task by learning
a manifold which compactly contains the data. Methods include
One-Class SVM [24] and SVDD [27]. Such methods have been ex-
tended to learning deep classifiers by Deep SVDD [22]. GOAD
[5] was recently proposed to extend the method of Golan and El-
Yaniv [8] to tabular data. Deep learning methods are much more
computationally expensive and contain many hyper-parameters in
comparison to the previously mentioned methods.
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Consensus methods: When several anomaly classifiers are
available, it is often possible to achieve better classification per-
formance than naively averaging their anomaly scores. Ensemble
methods attempt to optimize the combination of classifiers [2].
Rayana et al. [20] presented a consensus-based method for combin-
ing classifiers. The final step of our method also uses consensus,
and scores the classifiers in a similar manner of [20], but it has a
different selection rule and outperforms it.

2 BACKGROUND - PROJECTION-BASED
ANOMALY DETECTION

In this section, we present a framework that generalizes projection-
based anomaly detection methods. We show that popular existing
methods correspond to special-cases of this framework. In Sec. 3, we
will present effective new methods that obtain strong performance
without requiring prior knowledge of the data distribution.

Let our dataset X𝑡𝑟𝑎𝑖𝑛 consist of 𝑁 training samples. We de-
note individual samples 𝑥 , each sample is a 𝐷 dimensional vector
𝑥 ∈ R𝐷 . Most samples in our training set are normal while signif-
icantly fewer samples are anomalous. We define the probability
density function of data as 𝑝 (𝑥) = 𝑝 (𝑥1, 𝑥2 ...𝑥𝐷 ) (𝑥𝑑 denotes the
𝑑𝑡ℎ dimension of 𝑥). The label of each sample (normal or anoma-
lous) is given by labelling function 𝐿(𝑥), however this function is
not known to us, as the setting is unsupervised. At test time, we
are presented with a new sample 𝑥𝑡𝑒𝑠𝑡 , our objective is to predict
the correct label 𝐿(𝑥𝑡𝑒𝑠𝑡 ).

Although it is difficult to estimate 𝑝 (𝑥) directly, projection-based
methods estimate 1D marginals of 𝑝 (𝑥). For projections by unit
vectors, having a small marginal probability of a sample 𝑥 implies
that 𝑝 (𝑥) is also small, although the converse is not necessarily
true. We identify a framework which generalizes many popular
projection-based methods. This framework consists of four main
parts:
(I) Composing a set of linear projections to 1D: The first step is
to select a set of projection directions (parametrized by unit vectors)
𝑤1,𝑤2 ..𝑤𝑃 . In this paper we show that the choice of projections
directions is the key. By understanding the contribution of each
projection, we can leverage and optimize the selected projection
set. For example, if the set of projections is generated randomly
- accuracy can be improved by increasing the number of projec-
tions (as suggested by LODA) since each projection is a very weak
learner. In another example, in the case where the data distribution
is multimodal, projecting onto the principal components is may not
capture the most discriminative directions.
(II) Projecting the data: The projection vectors𝑤1,𝑤2 ..𝑤𝑃 project
the original features𝑥 onto their respective projected scalars 𝑧1, 𝑧2 ..𝑧𝑃 .

𝑧𝑖 = 𝑤𝑖 · 𝑥 (1)

(III) Estimating the 1D marginal probability distribution:
The third part, estimates the probability distribution of each

1D marginal 𝑧𝑖 . One approach is to employ a one-dimensional his-
tograms as non-parametric estimators for each probability density
function 𝑝𝑖 . The bins of the histogram can be equispaced or quantile-
based. Another approach is to assume a parametric distribution e.g.
estimating the marginal distribution by a 1D Gaussian.

(IV) Combining the marginal probabilities: The probabilities
estimated in part III are integrated together to a unified anomaly
score, where higher score indicates a more anomalous sample. A
common approach is to select all the projections and average their
contributions with equal weighting. Under restrictive assumptions,
their product recovers 𝑝 (𝑥). It has been shown that even when
the variables are not perfectly independent, the naive-Bayes com-
bination can still be effective [29]. Therefore, the anomaly score
function is defined in the following way:

𝑠𝑐𝑜𝑟𝑒 = −
∑
𝑖

log(𝑝𝑖 (𝑧𝑖 )) (2)

In practice, however, not all projection directions are equally
informative for anomaly detection. Therefore, a more general ap-
proach gives different weights to different projections reflecting
their relative importance. For example, [14] suggest a weighting
function for principal components projections, such that the eigen-
vectors with small eigenvalues are assigned greater importance.

In this work we propose an additional approach. We hypoth-
esise that an optimal selection of the projection directions may
significantly boost anomaly detection performance over using all
directions. Moreover, it can dramatically reduce the runtime of
projection-based methods. We can interpret this approach as a hard
weighting (𝑤𝑖 ∈ {0, 1}). We will investigate this hypothesis and
propose an unsupervised method for projection selection in Sec. 3.3.

We finally summarize the entire framework. We denote the indi-
vidual projection vectors𝑤1,𝑤2 ..𝑤𝑃 , and the weights of the projec-
tions 𝛼1, ...𝛼𝑃 . The anomaly score is therefore:

𝑠𝑐𝑜𝑟𝑒 (𝑥) = −
∑
𝑖

𝛼𝑖 log(𝑝𝑖 (𝑤𝑖 · 𝑥)) (3)

2.1 Framework Generalizes Popular Methods
We show that several popular anomaly detection methods can be
described as special cases of this framework:

HBOS:When the projection directions are along the standard
basis vectors 𝑒1, 𝑒2 ..𝑒𝑁 , the marginal distributions are estimated
by 1D histograms, and all 𝛼𝑖 = 1, Eq. 3 recovers HBOS. Although
HBOS achieves surprisingly strong results for such a simple method,
it typically does not outperform the state-of-the-art. Also, as the
projection directions are not adaptive to the data, they do not model
particular axes of variation, reducing the potential discriminative
ability. We will show in Sec. 4.3, that standard basis vector projec-
tions are however effective when the normal data has a multimodal
distribution. Such projections are used as a part of our method.

LODA:When the projection directions are along randomly sam-
pled directions from distribution N(0, 𝐼 ) s.t.𝑤 ∼ N(0, 𝐼 ), all 𝛼𝑖 = 1
and the marginal distributions are estimated by 1D histograms,
LODA is recovered. The authors justify choosing random projec-
tions by stating that at the limit of very high-dimensions, random
projections approach PCA projections. In practice, many projec-
tions are required for achieving strong performance, with corre-
spondingly slow runtime. Furthermore, the main conceptual issue
with LODA is that at a finite number of dimensions, different ran-
dom projections may not in fact be independent and more impor-
tantly, they may not correspond to those of particularly significant
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variation, meaning the directions may not be as informative as the
directions of the principal components.

Mahalanobis: Let𝑊 be the matrix computed by PCA, whose
column vectors are the eigenvectors of the covariance of the training
data. An anomaly detector by the Mahalanobis distance is obtained
from Eq. 3 by choosing the columns of𝑊 as the projections, and
estimating the marginal distribution by a univariate Gaussian distri-
bution for each projection direction. As mentioned previously, there
exist versions of the Mahalanobis method in which each component
is weighted according the proportion of explained variance (but
we did not observe significant differences in performance for the
unweighted method). The Mahalanobis method makes the assump-
tion the data is distributed as a multivariate Gaussian. In practice,
we observed that relying only on the principal components is not
sufficient when the normal data follows a multimodal distribution.

3 METHOD
Our methods, Chimera and S-Chimera follow the framework
described in Sec. 2, and provide a generic solution for the common
case where the normal and the anomaly distributions are not known
apriori.

This section is organized as follows. We first claim that the num-
ber of modes in the distribution of the normal data affects the
optimal projection set. We further propose a strategy for determin-
ing a strong set of projections given the knowledge of whether
a distribution is unimodal or multimodal. Next, we relax this as-
sumption by presenting a new method, Chimera, which obtains
strong performance without requiring prior knowledge of the data
distribution. Lastly, we present S-Chimera, which extends Chimera
with a consensus-based selection procedure, resulting in an even
faster and more accurate method.

3.1 The Choice of Optimal Projections
Depends on the Data Multimodality

In this section, we argue that the multimodality of the distribution
of normal data is critical to the choice of projections. Let us first
consider the case where the data follows a unimodal distribution.
In the absence of knowledge of the distribution of anomalies, and
assuming the data are formed linearly by a set of independent
factors, projecting the data to these components would form a very
strong prior for the directions along which anomalies would be
easiest to discriminate. On the other hand such linear models would
be insufficient in the case where the data distribution has multiple
modes. A weaker, but none-the-less powerful prior is projecting
onto the raw axes. It is often the case that anomalies are created
when the value of a particular feature is anomalous while the other
feature values are all normal. This prior in not data-driven and may
be used for multimodal data.

We therefore propose a simple, but surprisingly effective base-
line. We first determine if our dataset is unimodal or multimodal.
Note that making this determination automatically is not trivial
- please see Sec. 3.2 for our solution that avoids this unrealistic
requirement. In case it is unimodal, we use PCA projections while if
it is multimodal, we project it onto the raw axes. We then estimate
the probability density function of each marginal, and compute

their unweighted sum as in Eq. 3. Results can be seen in Sec. 4.3,
showing that this baseline outperforms many popular methods.

Implementation: To avoid making further parametric assump-
tions on the distribution of the data, the one-dimensional marginals
are estimated by histograms. In practice, we implement the proba-
bility density estimators by histograms with 10 fixed-width bins.
Our hyper-parameter settings for the histograms are identical to
those of HBOS in the PyOD library [30]. It is possible to run a
normality test on each marginal, and in the case it indeed follows a
normal distribution, replace the estimator by a 1D Gaussian esti-
mator. We do not show this in our experiments, as it did not yield
better results.

3.2 Dealing with unknown numbers of modes
The direct consequence of Sec. 3.1 is that given knowledge of
whether the data was unimodal or multimodal, an effective de-
terministic choice of projections can be made directly. In practice
the number of modes is not known apriori. A potentially simple
mitigation is using established statistical tests for the unimodal-
ity of data. Unfortunately, in our experiments, the results of using
statistical tests for selecting where to use projections appropriate
for unimodal or multimodal distributions have significantly lagged
behind doing so using the groundtruth. We first present a simple ap-
proach for dealing with this uncertainty, which we name Chimera
(the name suggestive of the two headed nature of our approach).
Chimera simply uses the concatenation of the projections along
the raw and principal axes.

𝑠𝑐𝑜𝑟𝑒 (𝑥) = −
∑
𝑖

log(𝑝𝑅𝑎𝑤𝑖 (𝑥)) −
∑
𝑖

log(𝑝𝑃𝐶𝐴𝑖 (𝑤𝑃𝐶𝐴
𝑖 · 𝑥)) (4)

3.3 Projection Selection by Consensus
The method proposed in Sec. 3.2, has two major drawbacks: i)
it increases the number of projections by a factor of 2, increasing
runtime by the same amount ii) for each modality, Chimera includes
a set of projections that are most suitable (e.g. PCA for unimodal)
and another set that is less suitable (e.g. raw axes for unimodal),
which has a negative effect on accuracy. We propose to solve this by
adding a selection stage that selects, in an unsupervised data-driven
way, a subset from the set of projections used by Chimera that is
best performing. This is equivalent to the weighting part in Sec. 2
with binary weights.

To investigate whether such weighting holds potential, we first
evaluate the maximum performance by selecting the optimal subset
of Chimera projections given full supervision. Please note that we
only use the supervision here to understand the expressivity of
the examined projections, we do not use supervision in our main
methods or experiments. The supervised procedure is detailed in
the SM. We perform this experiment on LODA and on our Chimera
projection set, and reached an average ROC-AUC boost of +11% and
+10.2% respectively over no selection. This confirms our hypothesis,
that selecting a suitable subset of projections, can obtain significant
accuracy gains as well as runtime improvements.

Having concluded that careful selection of projections can sig-
nificantly boost performance, we propose a method for doing so in
an unsupervised way. Our method is consensus-based, we choose
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the projections that accord most closely to the consensus. The intu-
ition is that accurate classifiers have a high degree of agreement on
which samples are anomalous while noisy classifiers have a strong
degree of disagreement over their results. Furthermore, we consider
agreement on which samples are anomalous as more significant
than agreement on the precise ranking of normal samples, as the
true ordering between two anomalies is easier to determine than
the ordering between two normal samples.

Our method first computes the consensus anomaly score of each
sample in the training set, using Eq. 4. This gives the measure
of how anomalous each sample is considered by the average of
scores of all projections. We proceed to compute the weighted
Pearson correlation between the individual scores according to each
projection and those of the consensus. We sort the samples by their
score from most anomalous to most normal and record their rank.
We denote the rank according to the consensus score as 𝑟𝑐 (𝑥). The
weighting function gives weight to samples as an inverse function
of their rank (according to the consensus scores) 𝛽 (𝑥) = 1

𝑟𝑐 (𝑥)
- the motivation is giving more importance to consistent scores
on anomalous samples rather than on normal samples. See the
algorithms for more details.

Our method selects the 𝑡% projections that are most correlated
to the consensus - and uses the sum of their scores as the final
score function. We denote this method S-Chimera. In practice, we
found that using 𝑡 = 40% achieved the best result while using fewer
projections than HBOS and Mahalanobis. This can be interpreted as
choosing the best of both worlds i.e. raw and principal axes. We re-
iterate that the difference between Chimera and S-Chimera is that
Chimera uses all projections while S-Chimera uses subset of only
the 𝑡% projections with the highest correlation to the consensus.

Algorithm 1: Chimera: Training Algorithm

Input: data samples X = {𝑥𝑖 ∈ R𝐷 }𝑁
𝑖=1

Output:
histograms {ℎ𝑒1 , .., ℎ𝑒𝐷 , ℎ𝑝𝑐1 , ...ℎ𝑝𝑐𝑀 }
projection set {𝑒1, , ..𝑒𝐷 , 𝑝𝑐1 .., 𝑝𝑐𝑀 }

1. Perform PCA on X, and extract the𝑀 =𝑚𝑖𝑛(𝐷, 𝑁 )
principal components:

𝑝𝑐1, ...𝑝𝑐𝑀 = 𝑃𝐶𝐴(𝑋 )
2. Estimate histograms:

∀𝑗 ∈ [1..𝑀] ℎ𝑝𝑐 𝑗 = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑋 · 𝑝𝑐 𝑗 )
∀𝑗 ∈ [1..𝐷] ℎ𝑒 𝑗 = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑋𝑇

𝑗
)

3. Return {ℎ𝑒1 , .., ℎ𝑒𝐷 , ℎ𝑝𝑐1 , ...ℎ𝑝𝑐𝑀 } and
{𝑒1, , ..𝑒𝐷 , 𝑝𝑐1 .., 𝑝𝑐𝑀 }

4 EXPERIMENTS
We conducted an extensive evaluation, comparing our method to
well-established state-of-the-art methods for anomaly detection on
tabular data.We also conducted ablations, validating the importance
of the different components of our method.

Algorithm 2: S-Chimera: Training Algorithm
Input:
data samples 𝑋 = {𝑥𝑖 ∈ R𝐷 }𝑁

𝑖=1
the ratio of selected projections 𝑡
Output:
histograms {ℎ𝑠1 , ...ℎ𝑠𝑔 } ⊂ {ℎ𝑒1 , .., ℎ𝑒𝐷 , ℎ𝑝𝑐1 , ...ℎ𝑝𝑐𝑀 }
projection set {𝑤𝑠1 , ...𝑤𝑠𝑔 } ⊂ {𝑒1, , ..𝑒𝐷 , 𝑝𝑐1 .., 𝑝𝑐𝑀 }

1. Train Chimera and obtain the learned histograms and
projections:

{ℎ𝑘 }𝐷+𝑀
𝑘=1 , {𝑤𝑘 }𝐷+𝑀

𝑘=1 = 𝐶ℎ𝑖𝑚𝑒𝑟𝑎().𝑡𝑟𝑎𝑖𝑛(𝑋 )
2. Calculate 𝑐 , the consensus score per sample:

∀𝑖 ∈ [1..𝑁 ] 𝑐𝑖 = − 1
𝐷+𝑀

∑𝐷+𝑀
𝑘=1 𝑙𝑜𝑔(𝑝ℎ𝑘 (𝑥𝑖 ))

3. Rank the samples, such that 𝑟1 is the most anomalous
point by the consensus, and 𝑟𝑁 is the most normal,
𝑟1 < 𝑟𝑁 :

𝑟 = 𝑟𝑎𝑛𝑘 (𝑐)
4. Calculate each classifier score, 𝑐𝑜𝑟𝑟𝑘 , by a weighted
Pearson correlation with the consensus,𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 1

𝑟 :

∀𝑘 ∈ [1..𝐷 +𝑀] 𝑐𝑜𝑟𝑟𝑘 =

𝑊𝑃𝑒𝑎𝑟𝑠𝑜𝑛((−𝑙𝑜𝑔(𝑝ℎ𝑘 (𝑋 ·𝑤𝑘 )), 𝑐), 1𝑟 )
5. Sort the scores in descending order:

𝑐𝑜𝑟𝑟𝑠1 , ...𝑐𝑜𝑟𝑟𝑠𝐷+𝑀 = 𝑠𝑜𝑟𝑡 (𝑐𝑜𝑟𝑟1, ...𝑐𝑜𝑟𝑟𝐷+𝑀 )
6. Select the first 𝑔 = 𝑡 · (𝐷 +𝑀) of the sorted projections.

7. Return {𝑤𝑠1 , ...𝑤𝑠𝑔 } and their corresponded histograms
{ℎ𝑠1 , ...ℎ𝑠𝑔 }

4.1 Experimental Settings
Datasets: Since we focus on high-dimensional data, we evaluated
our method using the high-dimensional real world datasets from
the ODDS library2[19]. These datasets have more than 20 dimen-
sions, and cover a broad spectrum of sizes, dimensionality, and
anomaly ratios (see Tab. 1), as well as equal numbers of unimodal
and multimodal datasets.

Baseline methods:We compared the performance of our meth-
ods with a wide selection of state-of-the-art baseline methods. The
methods were selected due to their strong performance, popularity
and relatedness to our method. The baseline methods that we com-
pared against are: HBOS [9], LODA [17] (using 100 or 1000 random
projections), Mahalanobis [14], Isolation Forest [15] (using 100 or
1000 isolation trees), KNN [3, 18] (with 𝑘 = 5), and OCSVM[23].
All the methods were described in Sec. 1.1 and Sec. 2. We used the
implementation by the PyOD library [30] for all these methods,
except from Mahalanobis that was implemented by scikit-learn
[16] Empirical Covariance implementation, and LODA that was
implement as part of our projections pipeline. For the evaluation
process, we used the PyOD benchmark evaluation procedure 3.

Evaluation metrics: Following the standard practice in the
field, we evaluated the different methods according to: i) the area

2http://odds.cs.stonybrook.edu/
3https://github.com/yzhao062/pyod/blob/master/notebooks/benchmark.py

http://odds.cs.stonybrook.edu/
https://github.com/yzhao062/pyod/blob/master/notebooks/benchmark.py
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under the receiver operating characteristic curve (ROC-AUC) ii)
the precision@𝑁𝑎 measures for a test set with 𝑁𝑎 anomalies, the
percentage of anomalies found within the 𝑁𝑎 test samples ranked
by the method as most anomalous iii) the inference time. All results
were averaged over 10 runs. All metrics were implemented using
the PyOD library.

4.2 Comparison with State-of-the-Art
ROC-AUC: We compare the average ROC-AUC of the evaluated
methods in Tab. 2. The detailed results of each dataset are presented
in the SM. We observe that HBOS and KNN achieve the weakest
average performance, while Isolation Forest and Mahalanobis are
the strongest baselines. Our method Chimera beats all baselines,
while combination with selection (S-Chimera) achieves even better
performance with results that are 2% better than the best baseline.
In Tab. 2, we also present the average ROC-AUC rank of each
method. S-Chimera is the top ranked method, and Chimera is the
second best. The difference in Mahalanobis performance across
both measures is due to its sensitivity to the multimodality of the
data, see Sec. 4.3 for further analysis. We conclude that S-Chimera
is the most accurate method across both measures.

Precision@𝑁𝑎 : In Tab. 2 we present results for the precision
metric, with OCSVM being the strongest baseline and being com-
petitive with Chimera. S-Chimera significantly boosts performance
to 3.4% over the best baseline.

Runtime: The average inference times of each of the evaluated
methods is presented in Tab. 2. We can observe that Isolation For-
est, one of the strongest baselines, is orders of magnitude slower
than our proposed method while achieving lower average accu-
racy. LODA with 100 projections is faster than Chimera and similar
runtime as S-Chimera, but it achieves weaker performance. Ad-
ditionally, using more random projections for LODA and more
random trees for Isolation Forest increases their average ROC-AUC
score by around 1%while increasing their runtime by a factor of ten,
further increases do not improve performance. The Mahalanobis
method has faster inference time than Chimera, and comparable
inference time as S-Chimera, while being less accurate than both.
S-Chimera has 40% of the number of projections of Chimera (thus
faster runtime), while typically being of higher accuracy. Although
S-Chimera has fewer projections than HBOS, it is a little slower as
some of the components require projection while HBOS uses the
raw samples - however its accuracy is much higher. To conclude,
our final method, S-Chimera, is much faster than the most accurate
methods - while having slightly faster or comparable speed to the
faster but much less accurate methods.

4.3 Analysis by Multimodality
Comparison between projection-based methods:We observe
in Fig. 2 that HBOS outperforms for multimodal datasets, while
Mahalnobis outperforms for unimodal datasets. However, both
methods are low ranked for datasets of the wrong modality. On
the other hand, Chimera obtains high performance and S-Chimera
reaches best or near-best performance for unimodal andmultimodal
data. This demonstrates the robustness of Chimera and S-Chimera.

Unimodality oracle (Sec. 3.1): When selecting HBOS for mul-
timodal datasets and Mahalanobis for unimodal datasets, according

Table 1: Dataset properties

Dataset #Samples #Dimensions % Outlier

speech 3686 400 1.6549
arrhythmia 452 274 14.6018
musk 3062 166 3.1679
mnist 7603 100 9.2069
optdigits 5216 64 2.8758
heart 267 44 20.5993
satellite 6435 36 31.6395
satimage-2 5803 36 1.2235
ionosphere 351 33 35.8974
letter 1600 32 6.25
wbc 378 30 5.5556
cardio 1831 21 9.6122

Figure 2: Comparison between projection-based methods -
by unimodality and multimodality

to a unimodality oracle, the obtained average ROC-AUC score is
0.781. S-Chimera, without any supervision or further assumptions
- achieves 0.776, and Chimera obtains 0.765. This shows that the
gains achievable by perfect unimodality tests over our unsupervised
method are limited.

Unsupervised unimodality tests: We evaluated the efficacy
of unsupervised statistical tests for determining if datasets are uni-
modal or multimodal. We examined three established methods: the
Dip test on all pair-distances and on PCA [1, 13] and the Folding
test [25]. We tested the unimodality classification accuracy on our
datasets of Tab. 1. The dip-PCA test reached the highest accuracy
of 83.3%, while the two other two tests scores had 58.3% accuracy.
Although using PCA/HBOS projection given the groundtruth mul-
timodality of the data reaches an average 0.781 ROC-AUC over our
datasets, using the best unsupervised test obtained a much lower
0.746. This is significantly lower than our method S-Chimera. This
suggests that our method is more robust than relying on statistical
unimodality tests.

4.4 Analysis of One-Dimensional Estimators
We compared the effect of estimating all the 1D marginals by: i)
Gaussians ii) histograms iii) a hybrid approach in where principal
component marginals are estimated by Gaussians and raw axes
marginals by histograms. The results are reported in Table 3.We can
observe that the hybrid and the histogram estimators outperform
the Gaussian estimators, while the histogram estimators are a bit
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Table 2: Performance comparison on ODDS datasets - S-Chimera is fast and accurate.

HBOS LODA(100/1000) IForest(100/1000) Mahalanobis KNN OCSVM Chimera S-Chimera

ROC-AUC score 0.720 0.739/0.745 0.756/0.759 0.754 0.716 0.740 0.765 0.776
ROC-AUC rank 5.00 4.58 4.42 4.83 5.50 4.58 3.83 3.17
Precision@𝑁𝑎 0.383 0.418/0.432 0.416/0.422 0.381 0.340 0.436 0.437 0.470
Runtime(ms) 3.95 4.65/43.44 89.79/906.34 5.70 633.56 219.90 10.39 4.07

Table 3: 1D Estimator Comparison: Histogram estimators
are better than Gaussian estimators

Gaussians Hybrid Histograms (Chimera)

0.752 0.763 0.765

Figure 3: (left) Ablation of our selectionmethod (right) Com-
parison of accuracy as a percentage of the number of se-
lected classifiers (𝑡%).

better than hybrid. This confirms that histograms are a robust
choice for estimation of the 1D marginals.

4.5 Analysis of Our Selection Method
In Sec. 3.3, we presented a new method for selecting projections. Al-
though our method is simpler than previously proposed consensus-
based selection methods, it performs better.

Comparison to random selection: We first test if our selec-
tion method improves over random selection of Chimera projec-
tions. The results are presented in Fig. 3. It is clear that random
selection achieves worse results than no selection at all, while our
selection method improves over all other methods.

Comparison to vertical selection. Rayana et al. [20] proposed
a method for selecting a subset of an ensemble of anomaly detectors.
We evaluate their "vertical selection" approach, which is similar
to ours but has a much more complex scoring and selection rule
(please see their paper for more details). We evaluate the average
ROC-AUC of their greedy-selection approach against ours in Fig. 3
(left - "vertical" bar). Their approach is slightly less accurate than not
selecting, while our method is better than both selecting greedily
and not selecting.

S-Chimera scoring function ablations: We ablated the effect
of assigning higher weights to anomalies in the correlation score
and found that it significantly improves ROC-AUC over uniformly
weighting all samples (see Fig. 3). Using non-linear rank correlation
does not improve the performance over Pearson correlation.

Determining the ratio of selected projections (𝑡%): We ex-
plored different ratios for determining the percentage of projections
most similar to the consensus that are selected by S-Chimera. We
present results for a range of retained component percentage values
in Fig. 3. It can be observed that 40% is optimal but deviations from
this value do not significantly reduce performance.

4.6 Comparison to Deep Learning Methods
Over the last several years, deep learning methods have been ad-
vanced as a promising direction for detecting anomalies in tabular
data. Therefore, we also compared our performance to the current
state-of-the-art deep learning methods - GOAD [5] and DROCC
[11]. These methods were mostly evaluated in the semi-supervised
setting, in which the training set contains only normal data points,
while the test set contains both normal and anomalous examples.
We therefore evaluated our methods with respect to these methods
in both of the settings - unsupervised and semi-supervised.

Unsupervised settingsWe compared the performance against
the main evaluation protocol used in this paper (unsupervised
setting, 12 highest-dimensional ODDS datasets). For the implemen-
tation details please see SM. The results are reported in Tab 4. We
can see that our simple and fast method outperforms the state-
of-the-art deep methods, both in term of the average score and
ranking.

Semi-supervised settings We also evaluated the performance
using the exact protocol used in GOAD (4 datasets, no anomalies in
training dataset). Please see the implementation details in the SM.
Since the selection process assumes anomalies in the training data,
S-Chimera is not relevant in this setting that only contains normal
data and we therefore used Chimera (without selection). The ROC-
AUC and F1 scores are reported in Tab. 4, our method outperforms
the state-of-the-art deep methods in this setting. Note that the F1
scores of DROCC vary from those reported in the paper as they
computed F1 differently from the standard practice. Their protocol
reverses the labels of normal and anomalous data, significantly
affecting F1 numbers (but not ROC-AUC). We evaluated all methods
with exactly the same protocol.

4.7 Combining Random Projections
We explored the effect of enriching the projection set with random
rotations. Fig 4 presents the results. We can see that enriching the
raw axes with random rotations enhances its performance, but by a
lower margin than our method of combining the raw with the PCA
projections (our method scores 2% better than raw+random). Com-
bining random rotations with the principal component projections
improves by 1% over projecting only on the PCs, however, Chimera
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Table 4: Comparison to deep learning methods: i) on the 4 commonly reported datasets in the tabular deep learning literature
(with normal-only training data) ii) on the main (unsupervised) evaluation protocol used in this paper.

ROC-AUC / F1 Scores
Dataset GOAD DROCC Chimera
arrhythmia 0.763 / 0.521 0.564 / 0.409 0.802 / 0.591
thyroid 0.958 / 0.744 0.975 / 0.720 0.990 / 0.785
kddrev 0.994 / 0.984 0.980 / 0.955 0.996 / 0.989
kdd 0.996 / 0.989 0.718 / 0.807 0.996 / 0.983

ROC-AUC Score
Dataset GOAD DROCC S-Chimera
Average score 0.731 0.623 0.776

Average rank 2.167 2.167 1.667

Figure 4: Comparison between projection sets

Table 5: Effect of different projections on top baselines

IF LODA

Original PCA Raw+PCA Original LODA+Chimera

0.756 0.749 0.759 0.739 0.755

boosts it by 1.5%. In addition, combining random rotations with
Chimera reduces the performance.

4.8 Effect of Raw and PCA axes on other
methods

In Tab. 5, we evaluate replacing the original inputs in our top base-
line Isolation Forest by its projections to the principal axes as well
as its concatenation of raw and PCA projected features. We can
see that the combination of raw and PCA improves the average
ROC-AUC. Furthermore, we see that adding Chimera to the LODA
projections improves LODA, but does not reach the performance
of Chimera. We conclude that enriching baseline methods with
information from more axes has a potential to improve the original
methods, but does not outperform Chimera.

5 DISCUSSION
In this section we discuss some of the wider consequences of this
work and explain its limitations.

Optimal projections by distributionunimodality:Wedemon-
strated that given the knowledge of whether a distribution is uni-
modal or multimodal, an effective strategy can be devised for de-
termining a strong set of projections. Unfortunately, the statistical

unimodality tests that we evaluated did not achieve the required
level of accuracy. S-Chimera presented another approach, selecting
the best projections from the combined set. Future research should
consider developing more accurate selection criteria. On the other
hand, research on the robustness of statistical unimodality tests is
promising.

Deep and shallow methods: Over the past several years, deep
learning methods have been advanced as a promising direction
for detecting anomalies in tabular data. The disadvantage of deep
learning methods is their heavy computational requirements and
slow runtime (both for training and inference), as well as the need
for large training datasets. In this paper, we investigated an alter-
native method which is simple, computationally cheap and easy to
interpret. We found that our method convincingly outperformed
deep learning methods on commonly reported high-dimensional
benchmarks. Categorizing the types of tabular data that are most
suitable for shallow learning and those that are most suitable for
deep learning is in our mind an exciting avenue for future research.

Low-dimensional data: Isolation Forest captures non-linear
dependencies between variables, which is one of our methods lim-
itation. As [12] stated, Isolation Forest is efficient especially for
low-dimensional data, since in high dimensions there is a high
probability that a large number of features are neglected in the pro-
cess. In addition, the relatively weak and low-rank dependencies
between variables in tabular data might become more dominant in
low-dimensional data. We evaluated the performance of Isolation
Forest on some low-dimensional ODDs datasets, and indeed, it pro-
vided more accurate results than Chimera. The success of Isolation
Forest on low-dimensional data indicates that focusing research of
complex non-linear methods (e.g. trees and deep neural networks)
on low-dimensional datasets is likely to yield promising results.

Semi-supervised vs. unsupervised settings:The semi-supervised
setting is characterized by a training set that consists of only normal
data, while the unsupervised setting assumes that the data contains
an unknown rate of anomalous points. kNN is the leading method
in the semi-supervised settings, but was not among the top methods
when anomalies were present in the training set. In addition, we
found that the sensitivity of Mahalanobis to the multimodality of
the normal data is reduced in the semi-supervised settings.

The potential of selection methods: In Sec. 3.3, we showed
that when selecting the best projection axes using supervised data
can boost the performance dramatically. Unsupervised selection
by our method improved the score over no selection and closed
some of the gap. The large performance gap remaining between
unsupervised and supervised projection selection, demonstrates
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the potential of improving unsupervised selection techniques. In
addition, a similar selection procedure can improve other ensemble
methods such as Isolation Forest.

Limitations of our methods: Although our methods achieve
state-of-the-art results on high-dimensional tabular anomaly detec-
tion, there are several limitations: i) our selection method relies on
the availability of anomalies in the training set (although we do not
assume that we know their labels) - we do not expect it to select
good projections in the case where no anomalies are available in
the training set. In such case we suggest defaulting to Chimera
without selection. ii) low-dimensional data can reduce the need-for
and effectiveness-of projection selection. iii) our methods assume
that the dependence between variables are linear - for data with
strong high-order correlations (e.g. images, text or audio), we do
not expect it to work well. In order to detect anomalies in such
data, it would first be necessary to extract strong features e.g. by a
pre-trained deep neural network and then run our method on the
deep features (see DN2 [4] for a similar idea). iv) our methods are
not designed for categorical data - finding sensible projection di-
rections for categorical data would depend on the precise encoding
method and would require more care - this is left for future work.

6 CONCLUSIONS
We presented two newmethods, Chimera and S-Chimera, for detect-
ing anomalies based on the estimation of the marginal probability
distributions of the raw and principal axes of the data. S-Chimera
selects the axes that are most beneficial for anomaly detection -
both in terms of accuracy and efficiency. Extensive experiments
showed that our method is both faster and more accurate than the
state-of-the-art.

7 ACKNOWLEDGMENTS
This work was partly supported by the Federmann Cyber Security
Research Center in conjunction with the Israel National Cyber
Directorate.

REFERENCES
[1] Andreas Adolfsson, Margareta Ackerman, and Naomi C. Brownstein. 2019. To

cluster, or not to cluster: An analysis of clusterability methods. Pattern Recognit.
88 (2019), 13–26. https://doi.org/10.1016/j.patcog.2018.10.026

[2] Charu C. Aggarwal and Saket Sathe. 2015. Theoretical Foundations and Al-
gorithms for Outlier Ensembles. SIGKDD Explor. 17, 1 (2015), 24–47. https:
//doi.org/10.1145/2830544.2830549

[3] Fabrizio Angiulli and Clara Pizzuti. 2002. Fast Outlier Detection in High Dimen-
sional Spaces. In Principles of Data Mining and Knowledge Discovery, 6th European
Conference, PKDD 2002, Helsinki, Finland, August 19-23, 2002, Proceedings (Lecture
Notes in Computer Science, Vol. 2431), Tapio Elomaa, Heikki Mannila, and Hannu
Toivonen (Eds.). Springer, 15–26. https://doi.org/10.1007/3-540-45681-3_2

[4] Liron Bergman, Niv Cohen, and Yedid Hoshen. 2020. Deep Nearest Neighbor
Anomaly Detection. CoRR abs/2002.10445 (2020). arXiv:2002.10445 https://arxiv.
org/abs/2002.10445

[5] Liron Bergman and Yedid Hoshen. 2020. Classification-Based Anomaly Detection
for General Data. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https:
//openreview.net/forum?id=H1lK_lBtvS

[6] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32. https:
//doi.org/10.1023/A:1010933404324

[7] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. In ACM sigmod record, Vol. 29. ACM,
93–104.

[8] Izhak Golan and Ran El-Yaniv. 2018. Deep Anomaly Detection Using Geometric
Transformations. In NeurIPS.

[9] Markus Goldstein and Andreas Dengel. [n.d.]. Histogram-based Outlier Score
(HBOS): A fast Unsupervised Anomaly Detection Algorithm.

[10] Markus Goldstein and Seiichi Uchida. 2016. A comparative evaluation of un-
supervised anomaly detection algorithms for multivariate data. PLoS One 11, 4
(April 2016). https://doi.org/10.1371/journal.pone.0152173

[11] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and
Prateek Jain. 2020. DROCC: Deep Robust One-Class Classification. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR,
3711–3721. http://proceedings.mlr.press/v119/goyal20c.html

[12] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. 2019. Statistical Analysis
of Nearest Neighbor Methods for Anomaly Detection. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett (Eds.). 10921–10931. https://proceedings.
neurips.cc/paper/2019/hash/805163a0f0f128e473726ccda5f91bac-Abstract.html

[13] J. A. Hartigan and P. M. Hartigan. 1985. The Dip Test of Unimodality. Ann. Statist.
13, 1 (03 1985), 70–84. https://doi.org/10.1214/aos/1176346577

[14] Mei ling Shyu, Shu ching Chen, Kanoksri Sarinnapakorn, and Liwu Chang. 2003.
A novel anomaly detection scheme based on principal component classifier.
In in Proceedings of the IEEE Foundations and New Directions of Data Mining
Workshop, in conjunction with the Third IEEE International Conference on Data
Mining (ICDM’03. 172–179.

[15] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008),
December 15-19, 2008, Pisa, Italy. IEEE Computer Society, 413–422. https://doi.
org/10.1109/ICDM.2008.17

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[17] Tomás Pevný. 2016. Loda: Lightweight on-line detector of anomalies. Mach.
Learn. 102, 2 (2016), 275–304. https://doi.org/10.1007/s10994-015-5521-0

[18] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient Algo-
rithms for Mining Outliers from Large Data Sets. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas,
Texas, USA, Weidong Chen, Jeffrey F. Naughton, and Philip A. Bernstein (Eds.).
ACM, 427–438. https://doi.org/10.1145/342009.335437

[19] Shebuti Rayana. 2016. ODDS Library. http://odds.cs.stonybrook.edu
[20] Shebuti Rayana and Leman Akoglu. 2016. Less is More: Building Selective

Anomaly Ensembles. ACM Trans. Knowl. Discov. Data 10, 4 (2016), 42:1–42:33.
https://doi.org/10.1145/2890508

[21] Murray Rosenblatt. 1956. Remarks on SomeNonparametric Estimates of a Density
Function. The Annals of Mathematical Statistics (1956), 832–837.

[22] Lukas Ruff, Nico Gornitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Robert Van-
dermeulen, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep
one-class classification. In ICML.

[23] Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alexander J. Smola, and
Robert C. Williamson. 2001. Estimating the Support of a High-Dimensional
Distribution. Neural Comput. 13, 7 (2001), 1443–1471. https://doi.org/10.1162/
089976601750264965

[24] Bernhard Scholkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor, and
John C Platt. 2000. Support vector method for novelty detection. In NIPS.

[25] Alban Siffer, Pierre-Alain Fouque, Alexandre Termier, and Christine Largouët.
2018. Are your data gathered? The Folding Test of Unimodality. In KDD 2018 -
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Minin.
London, United Kingdom, 2210–2218. https://doi.org/10.1145/3219819.3219994

[26] Mahito Sugiyama and Karsten Borgwardt. 2013. Rapid distance-based outlier
detection via sampling. Advances in Neural Information Processing Systems 26
(2013), 467–475.

[27] David MJ Tax and Robert PW Duin. 2004. Support vector data description.
Machine learning 54, 1 (2004), 45–66.

[28] Terry Windeatt and Gholamreza Ardeshir. 2002. Boosted Tree Ensembles for
Solving Multiclass Problems. In Multiple Classifier Systems, Third International
Workshop, MCS 2002, Cagliari, Italy, June 24-26, 2002, Proceedings (Lecture Notes
in Computer Science, Vol. 2364), Fabio Roli and Josef Kittler (Eds.). Springer, 42–51.
https://doi.org/10.1007/3-540-45428-4_4

[29] Harry Zhang. 2004. The Optimality of Naive Bayes. In Proceedings of the Sev-
enteenth International Florida Artificial Intelligence Research Society Conference,
Miami Beach, Florida, USA, Valerie Barr and Zdravko Markov (Eds.). AAAI Press,
562–567. http://www.aaai.org/Library/FLAIRS/2004/flairs04-097.php

[30] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox for
Scalable Outlier Detection. Journal of Machine Learning Research 20, 96 (2019),
1–7. http://jmlr.org/papers/v20/19-011.html

https://doi.org/10.1016/j.patcog.2018.10.026
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.1007/3-540-45681-3_2
https://arxiv.org/abs/2002.10445
https://arxiv.org/abs/2002.10445
https://arxiv.org/abs/2002.10445
https://openreview.net/forum?id=H1lK_lBtvS
https://openreview.net/forum?id=H1lK_lBtvS
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1371/journal.pone.0152173
http://proceedings.mlr.press/v119/goyal20c.html
https://proceedings.neurips.cc/paper/2019/hash/805163a0f0f128e473726ccda5f91bac-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/805163a0f0f128e473726ccda5f91bac-Abstract.html
https://doi.org/10.1214/aos/1176346577
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1007/s10994-015-5521-0
https://doi.org/10.1145/342009.335437
http://odds.cs.stonybrook.edu
https://doi.org/10.1145/2890508
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1145/3219819.3219994
https://doi.org/10.1007/3-540-45428-4_4
http://www.aaai.org/Library/FLAIRS/2004/flairs04-097.php
http://jmlr.org/papers/v20/19-011.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background - Projection-Based Anomaly Detection
	2.1 Framework Generalizes Popular Methods

	3 Method
	3.1 The Choice of Optimal Projections Depends on the Data Multimodality
	3.2 Dealing with unknown numbers of modes
	3.3 Projection Selection by Consensus

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparison with State-of-the-Art
	4.3 Analysis by Multimodality
	4.4 Analysis of One-Dimensional Estimators
	4.5 Analysis of Our Selection Method
	4.6 Comparison to Deep Learning Methods
	4.7 Combining Random Projections
	4.8 Effect of Raw and PCA axes on other methods

	5 Discussion
	6 Conclusions
	7 Acknowledgments
	References

