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ABSTRACT
Anomaly detection aims at finding observations in a dataset that
do not conform to expected behavior. Researchers have proposed
a large variety of anomaly detection algorithms and their perfor-
mance is greatly affected by how a user sets each algorithm’s hy-
perparameters. However, the anomaly detection literature does not
agree on how to set these hyperparameters when experimentally
comparing different algorithms. Most papers compare either per-
formance using “default” settings, or maximal performance under
optimal settings. In this paper, we argue that both strategies fail to
capture what practitioners are actually interested in: how well does
the algorithm perform in practice? They are either too pessimistic,
assuming no tuning, or unrealistically optimistic, assuming optimal
tuning; and they often result in methodologically unsound and irre-
producible comparisons between algorithms. We therefore propose
to use a small validation set to tune an anomaly detector’s hyperpa-
rameters on a per dataset basis. We argue this is realistic, striking
the balance between keeping the cost of acquiring labeled data low
and selecting the hyperparameters in a fair, sound, and reproducible
manner. We provide a theoretical lower bound on the validation
set size based on probability of an anomaly detector achieving a
higher area under the ROC curve than a random detector. Using a
benchmark of 16 datasets, we experimentally show that different
∗Both authors contributed equally to the paper
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hyperparameter selection strategies lead to different conclusions
about which algorithms perform better than others, and that using
a small validation set is a practically feasible and principled way of
tuning the hyperparameters for a given dataset.
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1 INTRODUCTION
While all unsupervised anomaly detection (AD) algorithms have
hyperparameters that can greatly affect performance, deciding how
to set them is challenging. The goal is to find hyperparameters that
yield good performance. However, measuring performance requires
having labeled data, which is assumed not to be available in an
unsupervised setting. In fact, the standard motivation for treating
anomaly detection as an unsupervised problem is that acquiring
labeled data is often difficult, if not infeasible, in practice.

In the literature, researchers tend to cope with this problem in
two different ways. The conservative point of view is to perform no
tuning and simply use the same hyperparameter configuration on
each dataset [2, 6, 8, 9, 11, 13, 16, 18, 19, 23, 25, 27, 30–35, 38–40, 42–
47]. This can be thought of as adhering to “reasonable defaults."
The opposite point of view is to report results for the hyperpa-
rameters that maximize the performance of the detector on each
dataset [5, 7, 15, 16, 20, 22–24, 29, 37, 49]. This is akin to assuming
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that one has access to an oracle that can always provide the optimal
hyperparameters for a dataset.

Unfortunately, both approaches have significant drawbacks. First,
neither approach is likely appropriate to answer the standard ques-
tion asked when empirically evaluating a new anomaly detection
method: is the new algorithm useful in practice, i.e., are there
datasets on which it outperforms the existing anomaly detection
algorithms? On the one hand, using defaults likely provides a pes-
simistic estimate of performance and disadvantages algorithms
whose hyperparameters have a large influence on performance.
On the other hand, reporting results that maximize performance
literally is "tuning on the test set" which is methodologically un-
sound. Second, both approaches are likely not indicative of what
would happen in practice. Practitioners will likely want to tune the
parameters in some way instead of falling back on defaults.

In this paper, we argue that anomaly detection should follow
standard ML practice: use a labeled validation set to select appro-
priate hyperparameters. This offers a principled way to choose
reasonable hyperparameter values that enables a fair, reproducible
and relevant comparison between algorithms (relevant in the sense
that in many practical use cases, it is realistic that the same tuning
method can be used). We propose a concrete evaluation strategy,
argue for its relevance and conduct an empirical evaluation. First,
we demonstrate that existing strategies can lead to substantially
different conclusions. Second, as our proposal relies on a validation
set which is preferably as small as possible, we also investigate the
effect of the size of the validation set on our evaluation strategy.
These experiments show that our strategy is feasible in practice,
as the majority of AD-methods can be tuned on a relatively small
validation set.

2 UNSUPERVISED ANOMALY DETECTION
Viewed from a learning perspective, an unsupervised anomaly de-
tection method is an algorithm that analyses a dataset 𝐷 ⊂ X and
returns either a prediction of which instances in 𝐷 are anomalous
(transductive setting), or a function that can predict for any instance
in the instance space X whether it is anomalous (inductive setting).
We here make abstraction of whether the method is transductive
or inductive; we assume it results in a “model” 𝑀 , the quality of
which is measured by some function 𝑞. Often, 𝑞(𝑀) is computed by
comparing𝑀 ’s predictions with the ground truth on some dataset,
which may or may not be equal to 𝐷 . Most algorithms for anom-
aly detection have hyperparameters that affect their behavior. We
therefore formalize these algorithms as follows: an anomaly detec-
tion algorithm𝐴 is a function that, given a dataset 𝐷 and values for
the algorithm’s hyperparameters 𝜃 , returns a model 𝐴(𝜃, 𝐷). Given
a quality criterion 𝑞, the task of hyperparameter tuning, for a given
dataset 𝐷 , then boils down to: find

𝜃∗ = arg max
𝜃

𝑞 (𝐴 (𝜃, 𝐷)) .

3 CURRENT METHODOLOGIES
Research on anomaly detection often involves determining which
algorithms perform best on certain datasets or under certain con-
ditions. This is typically determined empirically. We discuss two
methodologies frequently used in the literature, plus a variation
that acts as a reference point in our experiments, and we discuss

in what ways they are flawed. We assume a benchmarking setup:
multiple algorithms 𝐴𝑖 are evaluated on 𝑏 benchmark datasets
B = {𝐷1, . . . , 𝐷𝑏 } using a performance metric 𝑞.

Out-of-the-box performance. The most straightforward and pop-
ular methodology [2, 6, 8, 9, 11, 13, 16, 18, 19, 23, 25, 27, 30–35, 38–
40, 42–47] 1. is sticking to “default” hyperparameters 𝜃 𝑗 as rec-
ommended in the literature. Such recommendations come in two
forms: as fixed values (e.g. in iForest [27], set the number of trees
as 𝑡 = 100) or as simple rules of thumb, based on some dataset
characteristic (e.g.

√
|𝐷 | bins for HBOS [17]). This yields for each

algorithm 𝐴 and dataset 𝐷 𝑗 the out-of-the-box performance

𝑞
(
𝐴
(
𝜃 𝑗 , 𝐷 𝑗

) )
.

The overall out-of-the-box performance of an algorithm 𝐴 is
estimated as the average over all datasets used in the experimental
comparison:

𝑄𝑜𝑢𝑡𝑜 𝑓 𝑡ℎ𝑒𝑏𝑜𝑥 (𝐴) =
1
𝑏

𝑏∑
𝑗=1

𝑞
(
𝐴
(
𝜃 𝑗 , 𝐷 𝑗

) )
. (1)

This method is simple but has multiple drawbacks:

(1) It is relevant if we assume that there is no automatic way
of choosing better hyperparameters, and that practitioners
will make no effort to find good hyperparameters for a task.
This may not be realistic.

(2) If the above assumption is wrong, it tends to underestimate
the potential of algorithms whose performance strongly de-
pends on the hyperparameters.

(3) Different papers and different implementations use different
“defaults”, which still leaves the researcher with having to
choose one of them.

(4) It is often not known how these defaults were chosen. If the
default for an algorithm 𝐴 was chosen based on the observa-
tion that it works well on some collection of datasets that
(unbeknownst to the researcher) happens to overlap with
one used in a new investigation, then 𝐴 is at an advantage,
which may lead the researcher to wrong conclusions.

(5) For a newly proposed method, no default exists yet; the ques-
tion remains how to choose a default. Because of the previous
point, it is likely that the new default is chosen based on a dif-
ferent procedure than the other defaults, which jeopardizes
the fairness of the comparison between algorithms.

Peak performance. Another popular methodology [5, 7, 15, 16,
20, 22–24, 29, 37, 49] 2 is to use ground truth labels and select the
optimal hyperparameters 𝜃∗

𝑗
for each problem,

𝜃∗𝑗 = arg max
𝜃

𝑞(𝐴(𝜃, 𝐷 𝑗 )).

1In all of these references, we observe the use of default hyperparameters. We do not
mean to suggest they exclusively rely on this methodology. For more details -including
excerpts relevant to our categorization- we refer to our full literature review, available
at https://github.com/ML-KULeuven/comparative-evaluation-of-anomaly-detection-
methods
2Same comment as footnote 3, but for optimal hyperparameters instead of defaults.

https://github.com/ML-KULeuven/comparative-evaluation-of-anomaly-detection-methods
https://github.com/ML-KULeuven/comparative-evaluation-of-anomaly-detection-methods
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Averaging this over all datasets gives the peak performance of
an algorithm:

𝑄𝑝𝑒𝑎𝑘 (𝐴) =
1
𝑏

𝑏∑
𝑗=1

𝑞(𝐴(𝜃∗𝑗 , 𝐷 𝑗 )) . (2)

This strategy essentially measures the potential of an algorithm. Its
drawbacks are:

(1) It is relevant if we assume that practitioners can always select
the optimal parameters for a task. This is usually unrealistic.

(2) It overestimates the expected performance of the algorithm
when the above assumption is false.

Using this strategy is essentially a version of “tuning on the test
set”, which is generally considered unsound.

Best-default performance. Unlike the previous strategies, this one
is not common in the literature. Rather, it serves as a reference point
in our experiments. Instead of selecting the optimal hyperparam-
eters for each problem individually, one can select the hyperpa-
rameters that perform best on the whole collection of datasets, on
average:

𝜃 = arg max
𝜃

1
𝑏

𝑏∑
𝑗=1

𝑞(𝐴(𝜃, 𝐷 𝑗 ))

𝜃 are the “optimal default” hyperparameters for the collection of
datasets under consideration. The best-default performance of
an algorithm is

𝑄𝑏𝑒𝑠𝑡𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 (𝐴) =
1
𝑏

𝑏∑
𝑗=1

𝑞

(
𝐴

(
𝜃, 𝐷 𝑗

))
. (3)

Like out-of-the-box performance, best-default performance assumes
no problem-specific tuning is done. The main difference is that it
computes a good default for a given collection of datasets, rather
than obtaining it from external sources. This makes it unambigu-
ous, and allows treating all algorithms on an equal footing. On
the other hand, it is unsound for exactly the same reason as peak
performance: it has access to information that would not normally
be available to a practitioner. The pessimism of using default hyper-
parameters and the optimism of “tuning on the test set” partially
cancel each other out.

4 A STRATEGY BASED ON VALIDATION SETS
Because it is in their best interest to achieve the best possible per-
formance, our methodology assumes that typical practitioners do
an honest effort to find good hyperparameters. In particular, our
interpretation of “honest effort” is as follows: the practitioner has
access to (or alternatively, spends some time creating) a labeled sub-
set 𝐷𝐿 ⊂ 𝐷 and uses that information to tune the hyperparameters.
In a research setting, given a collection of datasets 𝐷 𝑗 , this can be
simulated by determining

𝜃
†
𝑗
= arg max

𝜃
𝑞𝐷𝐿

𝑗

(
𝐴(𝜃, 𝐷 𝑗 )

)
and the tuned performance for an algorithm 𝐴 is then:

𝑄𝑡𝑢𝑛𝑒𝑑 (𝐴) =
1
𝑏

𝑏∑
𝑗=1

𝑞𝐷 𝑗 \𝐷𝐿
𝑗

(
𝐴

(
𝜃
†
𝑗
, 𝐷 𝑗

))
. (4)

Note that the quality criterion𝑞 is now replaced by two variants𝑞𝐷𝐿
𝑗

and 𝑞𝐷 𝑗 \𝐷𝐿
𝑗
. This reflects the fact that 𝑞 still measures how close the

model’s predictions are to the ground truth, but on different subsets
of the original dataset: disjoint subsets are used for determining
the best hyperparameter values, and for evaluating the model with
those values.

In fact, this methodology is nothing new. The use of a labeled
validation set to select appropriate hyperparameters is standard
practice in supervised ML and is also supported by recent AD
toolboxes [26]. Nevertheless, this methodology appears to be largely
overlooked in the context of comparative evaluation of ADmethods.
Unlike the methodologies discussed in Section 3, benchmarking
with such tuned performances is accurate, reproducible, and sound.
One might ask why such standard practice is not already common
in anomaly detection. A possible answer is that it requires a labeled
subset of data, which goes against the idea of unsupervised learning.
However, in our experience, the assumption that the practitioner
is willing to provide a small amount of labeled data, in return for
a more accurate anomaly detector, is much more realistic than
the assumption that they are not interested in getting better than
out-of-the-box performance, or that they can guess the optimal
hyperparameter settings necessary to obtain peak performance.

4.1 Validation set size 𝑉
One important parameter of this procedure is the size of the val-
idation set. Increasing the size of the validation set increases the
likelihood that the model’s performance on the validation set is
indicative for the performance on the full dataset, because the val-
idation set becomes more representative. On the other hand, the
bigger the validation set, the more labels that need to be gathered
by the practitioner. This introduces a trade-off: the validation set
should be small to limit the labelling effort but not too small as the
best performing hyperparameters on a small set might not perform
well on the rest of the data.

So, what is the minimum validation set size required to select
good hyperparameters? In this paper, we determine this minimum
in two ways. First, from a practical point of view, we want to know
how many labeled instances are needed in order for this methodol-
ogy to work. In our experiments, we determine this by investigating
the effect of validation set size on our proposed strategy. Second,
we also propose a statistical criterion which ensures that, on a
given dataset, the validation set size is large enough to distinguish
between the performance of a given model and a random classifier.
In fact, if the validation set size does not statistically allow inferring
that the given model performs differently from random predictions,
then comparing different detectors is meaningless. In both cases,
we ensure that the validation set contains at least one anomaly and
that its contamination (i.e. the fraction of anomalies) is as close as
possible to the contamination of the full dataset.

Statistical criterion for the validation set size 𝑉 . The goal of this
criterion is to determine a lower bound on the size of the validation
set such that the AUC, i.e., the area under the receiver operating
characteristic (ROC) curve [3, 14], of a given anomaly detector is
statistically different from that of a random predictor. We use AUC
because it is a common performance metric in anomaly detection [1,
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Table 1: Hyperparameter grid used in our experiments. Ran-
dom seeds are fixed to ensure reproducibility.

Algorithm Hyperparameters

LOF and kNN 𝑘 = {3, 5, 7, . . . , 299}
HBOS 𝑛_𝑏𝑖𝑛𝑠 = {5, 10, 15, . . . , 100}
iForest 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = {25, 50, 75, . . . , 300}

𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = {0.1, 0.2, 0.3, . . . , 1}
𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = {0.1, 0.2, 0.3, . . . , 1}
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 3423452345

CBLOF 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = {2, 4, 6, . . . , 48}
𝛼 = {0.1, 0.2, 0.3, . . . , 0.9}
𝛽 = {2, 4, 6, . . . , 20}
𝑢𝑠𝑒_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 }
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 123412351

OCSVM 𝑘𝑒𝑟𝑛𝑒𝑙 =‘rbf’
𝜈 = {0.02, 0.04, 0.06, . . . , 1}
𝛾 = {0.001, 0.005, 0.01, 0.05, . . . , 5000, 10000}

5]. Similarly to [48], we follow three steps to derive this bound.
In the first step, we observe that the AUC on a discrete set of
examples takes values in

{
𝑖

𝑚0𝑚1
: 0 ≤ 𝑖 ≤ 𝑚0𝑚1

}
, where𝑚0 is the

number of normal examples (class 0) in the validation set, and𝑚1
the number of anomalies (class 1). ROC curves can be seen as 2D
lattice paths starting from (0, 0) and ending in (1, 1). Every time
the threshold used to generate the ROC curve moves, the path
takes a direction and makes a step of length 1

𝑚0𝑚1
. The area under

any path corresponds to the AUC in our setting. In the second
step, we investigate the behavior of the AUC under random paths.
According to [41], this area has a normal distribution with mean
1
2 and variance 𝑚0+𝑚1+1

12𝑚0𝑚1
, to the limit when𝑚0,𝑚1 → +∞. Given

that the contamination factor is 𝛾 =
𝑚1

𝑚0+𝑚1
, and that the size of

the validation set is 𝑉 = 𝑚0 +𝑚1, we can rewrite the variance
as 𝑉+1

12𝛾 (1−𝛾 )𝑉 2 . Finally, when 𝑉 → +∞, using U as the AUC of a
random classifier we derive that

U ∼ N
(

1
2
,

𝑉 + 1
12𝛾 (1 − 𝛾)𝑉 2

)
=⇒ P(U ≥ 𝑠) ≈ 1 − Φ

©­­«
(
𝑠 − 1

2

)
𝑉√

𝑉+1
12𝛾 (1−𝛾 )

ª®®¬ ,
(5)

whereΦ is the cumulative distribution function (cdf) of the standard
normal distribution. Note that U follows a normal distribution
only in the limit [41]. Thus, our approximation may have (small)
approximation errors. As a result, given a level of significance 𝑝 ,
we choose the size of the validation set 𝑉 such that P(U ≥ 𝑠) ≤ 𝑝 .
This means that the AUC achieved by our detector is statistically
different from the random prediction with a confidence level of
1 − 𝑝 .

In our experiments, for each dataset, we use the average out-
of-the-box performance of all algorithms as the AUC value 𝑠 , the
real contamination (i.e., the fraction of anomalies) of the validation
set as 𝛾 and a significance level 𝑝 of 0.05, unless explicitly stated
otherwise.

5 EXPERIMENTS
We demonstrate the impact of hyperparameter selection on the out-
comes of a benchmarking study. In the same context, we investigate

Table 2: Dataset characteristics of the datasets used in our
experiments. The contamination 𝛾 is the fraction of anoma-
lous instances.

Dataset name #attributes𝑚 #instances |𝐷 | contamination 𝛾

ALOI 27 49534 3.0%
Annthyroid 21 7129 7.5%
Arrhythmia 259 256 4.7%
Cardiotocography 21 1681 2.0%
InternetAds 1555 1966 18.7%
Ionosphere 32 250 10.0%
KDDCup99 40 48113 0.4%
Lymphography 18 148 4.1%
PageBlocks 10 5393 9.5%
Pima 8 555 9.9%
Shuttle 9 260 5.0%
SpamBase 57 2579 2.0%
Stamps 9 340 9.1%
WBC 9 200 5.0%
WDBC 30 100 10.0%
Waveform 21 3443 2.9%

the benefits and limitations of our proposal to tune hyperparame-
ters based on a validation set. This yields four research questions:

Q1 Does the methodology for selecting hyperparameters affect
the ranking of a benchmarking study?

Q2 How does the methodology for selecting hyperparameters
affect the performance of an algorithm?

Q3 Is a small labeled validation set sufficient for identifying a
good set of hyperparameters?

Q4 Is an algorithm’s performance on the validation set always
representative of its performance on the test set?

Datasets. We use a collection of 16 benchmark datasets (Cam-
pos et al. [5]) which are often used in the AD-literature. There
are multiple versions of each dataset. We use the normalized ver-
sion, without duplicates. If the contamination (i.e. the fraction of
anomalies) exceeds 20%, we use one of the subsampled versions at
random (Table 2).

Algorithms. We use six well-known unsupervised anomaly de-
tectors from four different families:

(1) Density-based: local outlier factor (LOF) [4], histogram-
based outlier detection (HBOS) [17], and cluster-based local
outlier factor (CBLOF) [21].

(2) Proximity-based: k-nearest-neighbor-based outlier detection
(kNN) [10].

(3) Isolation-based: isolation forest (iForest) [28].
(4) Kernel-based: one-class support vector machine (OCSVM) [36].

We use the implementations available in the PyOD python pack-
age [50].

Default hyperparameters. Tomeasure out-of-the-box performance,
we need default hyperparameters. As suggested in the literature, we
set: 𝑘 = 𝑚𝑎𝑥 (10, 0.03 · |𝐷 |) for kNN and LOF [12, 33]; fixed-width
histograms with

√
|𝐷 | bins for HBOS [17]; number of trees 𝑡 = 100

and number of samples per tree 𝜙 = 256 for iForest [27]; 𝛼 = 0.90,
𝛽 = 5, and k-means with 𝑘 = 10 as a clustering algorithm for
CBLOF [21]. Finally for OCSVM, we use the implementation defaults:
𝑟𝑏 𝑓 kernel with 𝜈 = 0.5 and𝛾 = 1/𝑚, with𝑚 the number of features
of dataset 𝐷 .
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Optimal & best-default hyperparameters. Optimal and best-default
hyperparameters (Section 3) are found via an exhaustive gridsearch
(Table 1).

Performance metrics. We report the average area under the re-
ceiver operating characteristic (ROC) curve (AUC) [3, 14], a canonical
choice [1, 5] in anomaly detection, as well as the average rank. To
calculate the average rank, for each dataset, we rank the algorithms
from best to worst performer according to AUC. The average rank
of a method is the average position of the method in each of the
rankings.

Experimental setup. For each experiment and dataset, we do the
following:

(1) Select a test set, which will be the same for each algorithm.
(2) From the remaining instances select the validation set, its

size specified as either a maximum number of instances,
or via our statistical criterion (Eq. 5) for a given p-value.
The validation set contains at least one anomaly and its
contamination is as close as possible to the contamination
of the full dataset. Like the test set, the validation set is the
same for each algorithm.

(3) When doing hyperparameter selection via our proposal, tune
the hyperparameters on the validation set.

(4) Measure the AUC on the test set, regardless of the method-
ology used to select hyperparameters. This ensures that all
reported performance estimates are comparable.

(5) To account for variance in performance estimates due to the
random test and validation sets, this procedure is repeated
ten times with different test and validation sets. We report
the average performance over these ten runs.

5.1 Q1: Does the methodology for selecting
hyperparameters affect the ranking of a
benchmarking study?

To answer Q1, we repeatedly conduct a benchmark study: first
based on peak, best-default and out-of-the-box performance, as
described in Section 3; then based on tuned performance (our pro-
posal), as explained in Section 4.

Results. Table 3 shows that different hyperparameter selection
methodologies lead to different rankings of the algorithms. Based
on peak performance, iForest performs best, closely followed by
CBLOF and OCSVM. According to best-default performance, the top
three should be iForest, CBLOF and kNN. Out-of-the-box perfor-
mance also indicates these three as top performers, but puts kNN
ahead of CBLOF. Finally, tuned performance also indicates iForest
and kNN as the top performers, followed by HBOS. But CBLOF, which
was among the top performers according to all other methodologies,
now drops to second to last in the ranking.

Conclusion. When benchmarking AD algorithms, the hyperpa-
rameter selection methodology influences the results to such an
extent that the final conclusions of the study are affected. This is
due the fact that some algorithms benefit more than others from
dataset-specific hyperparameters. In our experiment, CBLOF illus-
trates this nicely: it is the second best performer with optimal

Figure 1: Performance (in AUC) according to each hyperpa-
rameter selection methodology, for each algorithm in our
study, averaged across all datasets.

hyperparameters, but just the penultimate method with tuned hy-
perparameters. Similarly, OCSVM is among the top performers with
optimal hyperparameters, but ranks last in all other evaluation
settings.

5.2 Q2: How does the methodology for
selecting hyperparameters affect the
performance of an algorithm?

We now know that the ranking produced by a benchmarking study
can change, depending on how hyperparameter are selected (Q1).
Digging deeper, we focus on the impact of hyperparameter selection
on the performance of individual algorithms (Q2).

Results. Figure 1 shows that some algorithms are more sensitive
than others when it comes to hyperparameter selection.

First, the gap between out-of-the-box and peak performance tells
us how much an algorithm could theoretically benefit from optimal
dataset-specific hyperparameters. In general, all algorithms benefit
from optimal hyperparameters: on average, the AUC increases with
8.6% when comparing out-of-the-box to peak performance. OCSVM
and LOF benefit the most with AUC improvements of 14.7% and
13.0%, respectively; these algorithms will appear a lot stronger in
a a comparative evaluation based on peak performance than they
would in one based on out-of-the-box performance. HBOS benefits
the least from optimal hyperparameters with an improvement of
only 3.7%.

Second, the tuned performances tell us how much of those theo-
retical performance gains can be realized in practice with a reason-
able amount of tuning. Tuning LOF, iForest, kNN, and HBOS yields
an improvement over out-of-the-box performance of 6.4%, 3.6%,
2.4%, and 1.9% respectively. For these algorithms, roughly half of
the theoretically possible performance gain is realized with a rea-
sonable amount of tuning; on average, the tuned hyperparameters
perform similar to or slightly better than the best-default perfor-
mance. In contrast, for CBLOF and OCSVM the tuned performance is
on-average worse than their out-of-the-box performance.

Finally, regardless of how the default hyperparameters are set
(fixed values or via rules of thumb), best-default performance al-
ways exceeds out-of-the-box performance.
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Table 3: Benchmarking several AD-algorithms, based on different methodologies for hyperparameter selection. Size of vali-
dation set for tuned performance determined via Eq. 5 with 𝑝 = 0.05. For each algorithm, we report average AUC and average
rank (lower rank is better), across the entire benchmark.

Peak (Eq. 2) Best-default (Eq. 3) Out-of-the-box (Eq. 1) Tuned (Eq. 4)
algorithm avg AUC rank algorithm avg AUC rank algorithm avg AUC rank algorithm avg AUC rank

IForest 0.88 2.72 IForest 0.84 2.75 IForest 0.82 2.66 IForest 0.85 2.44
CBLOF 0.87 3.03 CBLOF 0.83 3.25 KNN 0.82 2.91 KNN 0.84 2.5
OCSVM 0.88 3.28 KNN 0.83 3.34 CBLOF 0.8 3.22 HBOS 0.81 3.56
LOF 0.87 3.5 LOF 0.81 3.59 HBOS 0.8 3.81 LOF 0.82 3.81
KNN 0.86 3.88 HBOS 0.8 3.91 LOF 0.77 4.12 CBLOF 0.8 3.94
HBOS 0.83 4.59 OCSVM 0.8 4.16 OCSVM 0.77 4.28 OCSVM 0.75 4.75

(a) Validation size via Eq. 5 for different 𝑝 values.

(b) Maximum validation size as an absolute amount of instances.

Figure 2: Tuned performance (averaged over all datasets) for different validation set sizes. Vertical black lines indicate the
standard deviation of tuned performance across different runs. Out-of-the-box, best-default and peak performance estimates
shown as horizontal lines.

Conclusion. In theory, each algorithm in our study could benefit
from optimal hyperparameters for each dataset, as peak perfor-
mance consistently exceeds out-of-the-box performance. In prac-
tice, the performance achieved with reasonable tuning strongly
depends on the algorithm. For most (HBOS, iForest, kNN and LOF),
tuned performance exceeds best-default performance. For others
(CBLOF and OCSVM), tuning is counterproductive, with tuned per-
formance lower than out-of-the-box performance. Furthermore,
whether or not tuning helps for a particular algorithm does not
depend on potential performance gains: although OCSVM and LOF
both have a large performance gap between their out-of-the-box
and peak performance, LOF benefits from tuning, but OCSVM does
not. In Section 5.4, we investigate what makes CBLOF and OCSVM
difficult to tune.

5.3 Q3: Is a small labeled validation set
sufficient for identifying a good set of
hyperparameters?

In Section 5.2, we show that tuning your hyperparameters on a
validation set enables some algorithms to do better than their out-
of-the-box performance. Ideally, this validation set is as small as
possible, because a smaller validation set requires less labeling effort
from the practitioner. So to answer Q3, we measure the effect of
the size of the validation set on the tuned performance. To do so,
we extend the results of Table 3 by computing tuned performance
for several other validation set sizes. We determine these validation
set sizes in two different manners: First, by using our statistical
criterion (Eq. 5, Section 4.1). Second, by using a (maximum) absolute



The Effect of Hyperparameter Tuning on the Comparative Evaluation of Unsupervised Anomaly Detection Methods ODD ’21, August 15, 2021, Virtual

validation set size 𝑛, whilst ensuring that at most 25% of each
dataset is used for tuning: i.e., validation set size 𝑉 = min

(
𝑛,

|𝐷 |
4

)
.

Because the contamination of validation set is kept similar to the
contamination of the full dataset (Table 2), the validation set often
contains only a few anomalies.

Results. Fig. 2 shows various tuned performances for different
validation set sizes. Overall (rightmost panels, Fig. 2), a validation
set size of 100 instances, or alternatively, a validation set size de-
termined via our criterion (Eq.5) using 𝑝 = 0.05, is sufficient for
tuned performance estimates to consistently exceed the out-of-the-
box performances. However, we observe substantial differences
between individual algorithms. For HBOS, iForest, LOF and kNN, a
small validation set of 50 instances suffices to get a tuned perfor-
mance similar to their best-default performance. OCSVM and CBLOF
need a larger validation set (250 instances) before they reach best-
default performance.

Conclusion. On average, in our experiments, hyperparameters
acquired by tuning on a validation set of 100 instances (or using our
statistical criterion with 𝑝 = 0.05) yield performances that exceed
the out-of-the-box performance. Overall, larger validation sets lead
to higher tuned performances. As for individual algorithms, some
algorithms seem more difficult to tune than others as they need
more labelled data before exceeding default-performance. OCSVM
and CBLOF are prime examples: they require fairly large valida-
tion sets (𝑝 = 0.01 or 250 instances) to find hyperparameters that
perform similar to best-default performance3.

5.4 Q4: Is an algorithm’s performance on the
validation set always representative of its
performance on the test set?

Using a small validation set to select good hyperparameters as-
sumes that the performance of a detector on the validation set is
indicative of its performance on the test set. However, as CBLOF
and OCSVM are clearly more difficult to tune than others (Q2, Q3),
it seems that this assumption is not always satisfied. This is what
we aim to verify with Q4: given a dataset 𝐷 , is an individuals algo-
rithm’s performance on the validation set always representative of
its performance on the test set?

Results. Fig. 3 depicts the performance on validation4 and on
test set for the best performing hyperparameters of each algorithm
and each dataset. It shows that performance on the validation set
is not always indicative of the performance on the test set, and
that the size of this effect differs from algorithm to algorithm. For
HBOS, kNN, iForest and LOF, the mean absolute difference between
the average validation and test set performance over 10 random
validation sets is 0.033, 0.041, 0.061 and 0.079 respectively. For these
algorithms, the validation set performance matches (reasonably)
well with that of the test set. For CBLOF and OCSVM, we observe
large discrepancies on some datasets; the mean absolute difference
between the average validation and test set performance is 0.109 and
0.164, respectively. This explains whywe observed (Sections 5.2, 5.3)

3Emmott et al. [11] also observed that OCSVM’s hyperparameters are hard to optimize.
4Validation set size determined via our statistical criterion with 𝑝 = 0.05.

that these methods are difficult to tune: hyperparameters that work
well on your validation set can completely fail on the test set.

Conclusions. Central to our methodology is the assumption that
an algorithm’s performance on the validation set provides a reliable
estimate of its performance on the test set. For CBLOF and OCSVM,
this is clearly not the case, which makes them difficult to tune.
Indeed, under realistic conditions (i.e. given a limited amount of
labeled data) these methods struggle to realize their full potential
(Sections 5.2, 5.3). This shows that the usefulness of a small, labeled
validation set is tightly intertwined with the kind of model you are
using; e.g. a validation set that is “sufficiently representative” for
iForest, can still be inadequate for OCSVM.

6 TAKEAWAYS
We summarize our main observations in five takeaway messages:

(1) When benchmarking anomaly detection algorithms, the final
ranking depends on the methodology used to select your
hyperparameters (Table 3).

(2) For most algorithms, tuning their hyperparameters on a
small validation set yields better performance than using the
default hyperparameters (Fig. 1).

(3) None of the algorithms in our study, however, are able to
realize their peak performance with a reasonable amount of
tuning (Fig. 1).

(4) The potential benefit of tuning does not depend on whether
the algorithm has a large gap between out-of-the-box and
peak performance, but on whether it is difficult to tune or
not (Figs. 2, 3).

(5) A small validation set containing only a few anomalies suf-
fices to achieve those benefits. Concretely, we advise a vali-
dation set size of 100 instances, or alternatively, a validation
set size determined via our criterion (Eq.5) using 𝑝 = 0.05
(Fig. 2).

Ultimately, we can draw three conclusions. One, it is indeed the
case that out-of-the-box performance is an overly pessimistic esti-
mate, whereas peak performance is overly optimistic (points 2-3).
Two, our proposed methodology is the only one that yields realistic
performance estimates, because it takes into account the difficulty
of tuning a particular detector on a particular dataset (point 4).
Three, our methodology is practically feasible, as a relatively small
validation set with a few anomalies is sufficient to tune the hyper-
parameters (point 5). Moreover, we also derived a theoretical lower
bound (Eq. 5) on the validation set size below which it is difficult
to distinguish the AUC of a given anomaly detector with that of a
random detector.

7 FUTUREWORK
Interesting directions for future work include extending the scope of
the current work to include deep ADmethods as well as the addition
of carefully constructed synthetic datasets to further elucidate what
exactly constitutes a good validation set.
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Figure 3: AUC on validation set (dashed line) and on test set (continuous line) for each algorithm and for each dataset. Valida-
tion set size via Eq. 5 with 𝑝 = 0.05.

ACKNOWLEDGMENTS
This research received funding from the Flemish Government un-
der the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaan-
deren” programme (JS, EVW, LP, VV, WM, JD, HB), the European
Research Council (ERC) under the EU’s Horizon 2020 research and
innovation programme grant agreement No. 694980 “SYNTH: Syn-
thesising Inductive Data Models” (EVW) and KU Leuven research
fund C14/17/070 (JD, HB).

REFERENCES
[1] Charu C. Aggarwal. 2017. Outlier Analysis. Springer Intl. Publishing AG.
[2] Faruk Ahmed and Aaron Courville. 2020. Detecting Semantic Anomalies. Proceed-

ings of the AAAI Conference on Artificial Intelligence 34, 04 (Apr. 2020), 3154–3162.
https://doi.org/10.1609/aaai.v34i04.5712

[3] Andrew P Bradley. 1997. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern recognition 30, 7 (1997),
1145–1159.

[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.
LOF: Identifying Density-based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD Intl. Conference on Management of Data. 93–104.

[5] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková, I. Assent
E. Schubert, and M. E. Houle. 2016. On the Evaluation of Unsupervised Out-
lier Detection: Measures, Datasets, and an Empirical Study. Data Mining and
Knowledge Discovery 30, 4 (2016), 891–927.

[6] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. 2017.
Robust, deep and inductive anomaly detection. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 36–51.

[7] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. 2018.
Anomaly detection using one-class neural networks. arXiv preprint
arXiv:1802.06360 (2018).

[8] Debanjan Datta, M. Raihanul Islam, Nathan Self, Amelia Meadows, John Simeone,
Willow Outhwaite, Chen Hin Keong, Amy Smith, Linda Walker, and Naren
Ramakrishnan. 2020. Detecting Suspicious Timber Trades. Proceedings of the
AAAI Conference on Artificial Intelligence 34, 08 (Apr. 2020), 13248–13254. https:
//doi.org/10.1609/aaai.v34i08.7032

[9] Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane Zouaoui.
2018. A comparative evaluation of outlier detection algorithms: Experiments and
analyses. Pattern Recognition 74 (2018), 406–421.

[10] Sahibsingh A Dudani. 1976. The distance-weighted k-nearest-neighbor rule. IEEE
Transactions on Systems, Man, and Cybernetics SMC-6, 4 (1976), 325–327.

[11] Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-
Keen Wong. [n.d.]. A Meta-Analysis of the Anomaly Detection Problem. ([n. d.]).
arXiv:1503.01158v2 [cs.AI]

[12] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-
Keen Wong. 2013. Systematic construction of anomaly detection benchmarks
from real data. In Proceedings of the ACM SIGKDD workshop on outlier detection
and description. 16–21.

[13] Eleazar Eskin. 2000. Anomaly Detection over Noisy Data using Learned Proba-
bility Distributions. In Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), Stanford University, Stanford, CA, USA, June 29 -
July 2, 2000, Pat Langley (Ed.). Morgan Kaufmann, 255–262.

[14] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861–874.

[15] Len Feremans, Vincent Vercruyssen, Boris Cule,WannesMeert, and Bart Goethals.
2019. Pattern-Based Anomaly Detection in Mixed-Type Time Series. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2019,Würzburg, Germany, September 16-20, 2019, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 11906), Ulf Brefeld, Élisa Fromont, Andreas Hotho,
Arno J. Knobbe, Marloes H. Maathuis, and Céline Robardet (Eds.). Springer,
240–256. https://doi.org/10.1007/978-3-030-46150-8_15

[16] Izhak Golan and Ran El-Yaniv. 2018. Deep Anomaly Detection Using Geometric
Transformations. In Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
5e62d03aec0d17facfc5355dd90d441c-Paper.pdf

[17] Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm. KI-2012: Poster&Demo
Track (2012), 59–63.

[18] Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. 2019. PIDForest: Anomaly
Detection via Partial Identification. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2019/file/eb6dc8aba23375061b6f07b137617096-Paper.pdf

[19] Eyal Gutflaish, Aryeh Kontorovich, Sivan Sabato, Ofer Biller, and Oded Sofer.
2019. Temporal Anomaly Detection: Calibrating the Surprise. Proceedings of the

https://doi.org/10.1609/aaai.v34i04.5712
https://doi.org/10.1609/aaai.v34i08.7032
https://doi.org/10.1609/aaai.v34i08.7032
https://arxiv.org/abs/1503.01158v2
https://doi.org/10.1007/978-3-030-46150-8_15
https://proceedings.neurips.cc/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5e62d03aec0d17facfc5355dd90d441c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/eb6dc8aba23375061b6f07b137617096-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/eb6dc8aba23375061b6f07b137617096-Paper.pdf


The Effect of Hyperparameter Tuning on the Comparative Evaluation of Unsupervised Anomaly Detection Methods ODD ’21, August 15, 2021, Virtual

AAAI Conference on Artificial Intelligence 33, 01 (Jul. 2019), 3755–3762. https:
//doi.org/10.1609/aaai.v33i01.33013755

[20] Ville Hautamäki, Ismo Kärkkäinen, and Pasi Fränti. 2004. Outlier Detection
Using k-Nearest Neighbour Graph. In 17th International Conference on Pattern
Recognition, ICPR 2004, Cambridge, UK, August 23-26, 2004. IEEE Computer Society,
430–433. https://doi.org/10.1109/ICPR.2004.1334558

[21] Zengyou He, Xiaofei Xu, and Shengchun Deng. 2003. Discovering cluster-based
local outliers. Pattern Recognit. Lett. 24, 9-10 (2003), 1641–1650. https://doi.org/
10.1016/S0167-8655(03)00003-5

[22] Ko-jen Hsiao, Kevin Xu, Jeff Calder, and Alfred Hero. 2012. Multi-criteria Anom-
aly Detection using Pareto Depth Analysis. In Advances in Neural Information
Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2012/file/1543843a4723ed2ab08e18053ae6dc5b-Paper.pdf

[23] Tomoharu Iwata and Makoto Yamada. 2016. Multi-view Anomaly Detection via
Robust Probabilistic Latent Variable Models. In Advances in Neural Information
Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(Eds.), Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2016/file/0f96613235062963ccde717b18f97592-Paper.pdf

[24] J.H.M. Janssens. 2013. Outlier selection and one-class classification. Ph.D. Disser-
tation. Series: TiCC Ph.D. Series Volume: 27.

[25] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. 2008. Angle-based
outlier detection in high-dimensional data. In Proceedings of the 14th ACMSIGKDD
International Conference on Knowledge Discovery and Data Mining, Las Vegas,
Nevada, USA, August 24-27, 2008, Ying Li, Bing Liu, and Sunita Sarawagi (Eds.).
ACM, 444–452. https://doi.org/10.1145/1401890.1401946

[26] Yuening Li, Daochen Zha, Praveen Venugopal, Na Zou, and Xia Hu. 2020. Pyodds:
An end-to-end outlier detection system with automated machine learning. In
Companion Proceedings of the Web Conference 2020. 153–157.

[27] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
Eighth IEEE Intl. Conference on Data Mining. IEEE, 413–422.

[28] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
Eighth IEEE Intl. Conference on Data Mining. IEEE, 413–422.

[29] Yen-Cheng Lu, Feng Chen, Yang Chen, and Chang-Tien Lu. 2013. A Generalized
Student-t Based Approach to Mixed-Type Anomaly Detection. Proceedings of the
AAAI Conference on Artificial Intelligence 27, 1 (Jun. 2013). https://ojs.aaai.org/
index.php/AAAI/article/view/8581

[30] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Fabian Keller, and Klemens
Böhm. 2013. CMI: An information-theoretic contrast measure for enhancing sub-
space cluster and outlier detection. In Proceedings of the 2013 SIAM International
Conference on Data Mining. SIAM, 198–206.

[31] Guansong Pang, Longbing Cao, Ling Chen, Defu Lian, and Huan Liu. 2018. Sparse
Modeling-Based Sequential Ensemble Learning for Effective Outlier Detection in
High-Dimensional Numeric Data. Proceedings of the AAAI Conference on Artificial
Intelligence 32, 1 (Apr. 2018). https://ojs.aaai.org/index.php/AAAI/article/view/
11692

[32] Heiko Paulheim and Robert Meusel. 2015. A decomposition of the outlier detec-
tion problem into a set of supervised learning problems. Machine Learning 100,
2-3 (2015), 509–531.
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